Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 533:7325484fc491
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 23 Apr 2022 17:46:12 +0900 |
parents | 90f61d55cc54 |
children | c9f80aea598e |
files | src/zorn.agda |
diffstat | 1 files changed, 62 insertions(+), 44 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Apr 22 13:56:31 2022 +0900 +++ b/src/zorn.agda Sat Apr 23 17:46:12 2022 +0900 @@ -438,12 +438,20 @@ ≤-monotonic-f : (A : HOD) → ( Ordinal → Ordinal ) → Set (Level.suc n) ≤-monotonic-f A f = (x : Ordinal ) → odef A x → ( * x ≤ * (f x) ) ∧ odef A (f x ) -record ZChain ( A : HOD ) {x : Ordinal} (ax : A ∋ * x) (z : Ordinal) : Set (Level.suc n) where +record Indirect< (A : HOD) {x y : Ordinal } (xa : odef A x) (ya : odef A y) (z : Ordinal) : Set n where field - chain : HOD - chain⊆A : chain ⊆ A - f-total : ( f : Ordinal → Ordinal ) → ≤-monotonic-f A f → IsTotalOrderSet chain - is-max : ( f : Ordinal → Ordinal ) → ≤-monotonic-f A f → {a b : Ordinal } → odef chain a → a o< z → * a < * b → odef chain b + az : odef A z + x<z : * x < * z + z<y : * z < * y + +IndirectSet< : (A : HOD) → {x y : Ordinal } (xa : odef A x) (ya : odef A y) → HOD +IndirectSet< A {x} {y} xa ya = record { od = record { def = λ z → odef A z ∧ Indirect< A xa ya z } ; odmax = & A ; <odmax = {!!} } + +record Prev< (A : HOD) {x : Ordinal } (xa : odef A x) : Set n where + field + prev : Ordinal + aprev : odef A prev + direct : & (IndirectSet< A aprev xa ) ≡ o∅ record SUP ( A B : HOD ) : Set (Level.suc n) where field @@ -451,6 +459,18 @@ A∋maximal : A ∋ sup x<sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total, use positive +SupCond : ( A B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → Set (Level.suc n) +SupCond A B _ _ = SUP A B + +record ZChain ( A : HOD ) {x : Ordinal} (ax : A ∋ * x) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) + (sup : (C : Ordinal ) → IsTotalOrderSet (* C) → Ordinal) (z : Ordinal) : Set (Level.suc n) where + field + chain : HOD + chain⊆A : chain ⊆ A + f-total : IsTotalOrderSet chain + f-next : {a : Ordinal } → odef chain a → odef chain (f a) + is-max : {a b : Ordinal } → odef chain a → odef A b → a o< z → ( ? ∨ (sup (& chain) (subst ? ? f-total) ≡ b )) → * a < * b → odef chain b + Zorn-lemma : { A : HOD } → o∅ o< & A → IsPartialOrderSet A @@ -470,14 +490,14 @@ z07 : {y : Ordinal} → odef A y ∧ ((m : Ordinal) → odef A m → ¬ (* y < * m)) → y o< & A z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → ((m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m) )) → ⊥ - no-maximum nomx x P = ¬x<0 (eq→ nomx {x} ? ) + no-maximum nomx x P = ¬x<0 (eq→ nomx {x} {!!} ) Gtx : { x : HOD} → A ∋ x → HOD Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = {!!} } cf : ¬ Maximal A → Ordinal → Ordinal cf nmx x with ODC.∋-p O A (* x) ... | no _ = o∅ ... | yes ax with is-o∅ (& ( Gtx ax )) - ... | yes nogt = ⊥-elim (no-maximum ? x x-is-maximal ) where -- no larger element, so it is maximal + ... | yes nogt = ⊥-elim (no-maximum (≡o∅→=od∅ {!!} ) x x-is-maximal ) where -- no larger element, so it is maximal x-is-maximal : (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m)) x-is-maximal m am = ⟪ subst (λ k → odef A k) &iso ax , ¬x<m ⟫ where ¬x<m : ¬ (* x < * m) @@ -487,45 +507,45 @@ cf-is-<-monotonic nmx x ax = ⟪ {!!} , {!!} ⟫ cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ - zsup : (zc : ZChain A sa (& A)) → ( f : Ordinal → Ordinal ) → ≤-monotonic-f A f → SUP A (ZChain.chain zc) - zsup zc f mf = supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc f mf ) + zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A sa f mf ? (& A)) → SUP A (ZChain.chain zc) + zsup f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc ) -- zsup zc f mf = & ( SUP.sup (supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc f mf ) ) ) - A∋zsup : (zc : ZChain A sa (& A)) → (nmx : ¬ Maximal A ) → A ∋ * ( & ( SUP.sup (zsup zc (cf nmx) (cf-is-≤-monotonic nmx)) )) - A∋zsup zc nmx = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup zc (cf nmx) (cf-is-≤-monotonic nmx)) ) - z03 : (zc : ZChain A sa (& A)) → ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → f (& ( SUP.sup (zsup zc f mf ))) ≡ & (SUP.sup (zsup zc f mf )) + A∋zsup : (nmx : ¬ Maximal A ) (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) ? (& A)) + → A ∋ * ( & ( SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) )) + A∋zsup nmx zc = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) ) + z03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A sa f mf ? (& A)) → f (& ( SUP.sup (zsup f mf zc ))) ≡ & (SUP.sup (zsup f mf zc )) z03 = {!!} - z04 : (zc : ZChain A sa (& A)) → ¬ Maximal A → ⊥ - z04 zc nmx = z01 {* (cf nmx c)} {* c} {!!} (A∋zsup zc nmx ) (case1 ( cong (*)( z03 zc (cf nmx) (cf-is-≤-monotonic nmx )))) - (proj1 (cf-is-<-monotonic nmx c ((subst λ k → odef A k ) &iso (A∋zsup zc nmx )))) where - c = & (SUP.sup (zsup zc (cf nmx) (cf-is-≤-monotonic nmx))) + z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) ? (& A)) → ⊥ + z04 nmx zc = z01 {* (cf nmx c)} {* c} {!!} (A∋zsup nmx zc ) (case1 ( cong (*)( z03 (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) + (proj1 (cf-is-<-monotonic nmx c ((subst λ k → odef A k ) &iso (A∋zsup nmx zc )))) where + c = & (SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc )) -- ZChain is not compatible with the SUP condition - ind : (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A sa y ∨ Maximal A ) - → ZChain A sa x ∨ Maximal A - ind x prev with Oprev-p x + ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A sa f mf ? y ) + → ZChain A sa f mf ? x + ind f mf x prev with Oprev-p x ... | yes op with ODC.∋-p O A (* x) ... | no ¬Ax = zc1 where -- we have previous ordinal and ¬ A ∋ x, use previous Zchain px = Oprev.oprev op - zc1 : ZChain A sa x ∨ Maximal A - zc1 with prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) - ... | case2 x = case2 x -- we have the Maximal - ... | case1 zc = case1 {!!} + zc0 : ZChain A sa f mf ? (Oprev.oprev op) + zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) + zc1 : ZChain A sa f mf ? x + zc1 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; is-max = {!!} } ... | yes ax = zc4 where -- we have previous ordinal and A ∋ x px = Oprev.oprev op - zc1 : OSup> A (subst (OD.def (od A)) (sym &iso) (subst (OD.def (od A)) &iso ax)) → ZChain A sa x ∨ Maximal A - zc1 os with prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) - ... | case2 mx = case2 mx - ... | case1 zc = case1 {!!} - zc4 : ZChain A sa x ∨ Maximal A - zc4 with Zorn-lemma-3case 0<A PO x (subst (λ k → odef A k) &iso ax ) - ... | case1 y>x = zc1 y>x - ... | case2 (case1 mx) = case2 mx - ... | case2 (case2 ic) with prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) - ... | case2 mx = case2 mx - ... | case1 zc = {!!} - ind x prev | no ¬ox with trio< (& A) x --- limit ordinal case - ... | t = {!!} - + zc0 : ZChain A sa f mf ? (Oprev.oprev op) + zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) + -- x is in the previous chain, use the same + -- x has some y which y < x ∧ f y ≡ x + -- x has no y which y < x + zc4 : ZChain A sa f mf ? x + zc4 = record { chain = {!!} ; chain⊆A = {!!} ; f-total = {!!} ; f-next = {!!} ; is-max = {!!} } + ind f mf x prev | no ¬ox with trio< (& A) x --- limit ordinal case + ... | tri< a ¬b ¬c = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ; is-max = {!!} } where + zc0 = prev (& A) a + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b c = {!!} zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x = zorn02 } where @@ -536,16 +556,14 @@ zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) zorn02 {x} ax m<x = proj2 zorn03 (& x) ax (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) - ... | yes ¬Maximal = ⊥-elim ( z04 zorn03 zorn04 ) where + ... | yes ¬Maximal = ⊥-elim ( z04 nmx (zorn03 (cf nmx) (cf-is-≤-monotonic nmx))) where -- if we have no maximal, make ZChain, which contradict SUP condition - zorn04 : ¬ Maximal A - zorn04 mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where + nmx : ¬ Maximal A + nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ - zorn03 : ZChain A sa (& A) - zorn03 with TransFinite ind (& A) - ... | case1 zc = zc - ... | case2 mx = ⊥-elim ( zorn04 mx ) + zorn03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → ZChain A sa f mf ? (& A) + zorn03 f mf = TransFinite (ind f mf) (& A) -- usage (see filter.agda ) --