Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 350:7389120cd6c0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Jul 2020 10:52:06 +0900 |
parents | adc3c3a37308 |
children | 74fd1073c5b7 |
files | ordinal.agda |
diffstat | 1 files changed, 13 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal.agda Tue Jul 14 09:00:24 2020 +0900 +++ b/ordinal.agda Tue Jul 14 10:52:06 2020 +0900 @@ -244,8 +244,19 @@ lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 x) (case1 (s≤s (s≤s lt))) not = lemma3 x lt where lemma3 : {n l : Nat} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥ lemma3 (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n - lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 lt) (case2 lt2) not = {!!} - lemma2 (ordinal (Suc lx) (OSuc (Suc lx) os)) lt (case2 lt2) not = {!!} + --- next y = ordinal (Suc (lv y)) (Φ (Suc (lv y))) + -- lt : lv y < Suc lx + -- lt2 : Φ (Suc lx) d< OSuc (Suc (lv y)) (Φ (Suc (lv y))) -> Suc lx ≡ Suc (lv y) < Suc lx + lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 lt) (case2 lt2) not with <-∨ lt + ... | case1 refl = {!!} where -- x = next y case + lemma4 : (ordinal (Suc lx) (Φ (Suc lx))) ≡ next y + lemma4 = refl + ... | case2 lt3 = nat-≡< (sym (d<→lv lt2)) (s≤s lt3) + lemma2 (ordinal (Suc lx) (OSuc (Suc lx) os)) (case1 lt) (case2 lt2) not with <-∨ lt + ... | case2 lt3 = nat-≡< (sym (d<→lv lt2)) (s≤s lt3) + ... | case1 refl with lt2 + ... | s< () + lemma2 (ordinal (Suc .(lv y)) (OSuc .(Suc (lv y)) os)) (case2 lt) (case2 (s< ())) not not-limit : (x : Ordinal) → Dec (¬ ((y : Ordinal) → ¬ (x ≡ osuc y))) not-limit (ordinal lv (Φ lv)) = no (λ not → not (λ y () ))