Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 310:73a2a8ec9603
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Jun 2020 08:55:12 +0900 |
parents | d4802179a66f |
children | bf01e924e62e |
files | OD.agda |
diffstat | 1 files changed, 7 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jun 30 00:17:05 2020 +0900 +++ b/OD.agda Tue Jun 30 08:55:12 2020 +0900 @@ -220,7 +220,7 @@ OPwr : (A : HOD ) → HOD -OPwr A = Ord ( sup-o A {!!} ) -- ( λ x → od→ord ( ZFSubset A x) ) ) +OPwr A = Ord ( sup-o A ( λ x A∋x → od→ord ( ZFSubset A (ord→od x)) ) ) -- _⊆_ : ( A B : HOD ) → ∀{ x : HOD } → Set n -- _⊆_ A B {x} = A ∋ x → B ∋ x @@ -270,8 +270,8 @@ ZFSet = HOD -- is less than Ords because of maxod Select : (X : HOD ) → ((x : HOD ) → Set n ) → HOD Select X ψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( ord→od x )) } ; odmax = odmax X ; <odmax = λ y → <odmax X (proj1 y) } - Replace : HOD → (HOD → HOD ) → HOD - Replace X ψ = record { od = record { def = λ x → (x o< sup-o X {!!} ) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) + Replace : HOD → (HOD → HOD) → HOD + Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋x → od→ord (ψ (ord→od x)))) ∧ odef (in-codomain X ψ) x } ; odmax = {!!} ; <odmax = {!!} } -- ( λ x → od→ord (ψ x)) _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y))} Union : HOD → HOD @@ -401,7 +401,7 @@ lemma1 : {a : Ordinal } { t : HOD } → (eq : ZFSubset (Ord a) t =h= t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t lemma1 {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq )) - lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (Ord a) {!!} -- (λ x → od→ord (ZFSubset (Ord a) x)) + lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (Ord a) (λ x lt → od→ord (ZFSubset (Ord a) (ord→od x))) lemma = {!!} -- sup-o< -- @@ -425,7 +425,7 @@ lemma5 {y} eq not = (lemma3 (ord→od y) eq) not power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t - power← A t t→A = record { proj1 = lemma1 ; proj2 = lemma2 } where + power← A t t→A = record { proj1 = {!!} ; proj2 = lemma2 } where a = od→ord A lemma0 : {x : HOD} → t ∋ x → Ord a ∋ x lemma0 {x} t∋x = c<→o< (t→A t∋x) @@ -439,8 +439,8 @@ ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩ t ∎ - lemma1 : od→ord t o< sup-o (OPwr (Ord (od→ord A))) {!!} -- (λ x → od→ord (A ∩ x)) - lemma1 = subst (λ k → od→ord k o< sup-o (OPwr (Ord (od→ord A))) {!!}) -- (λ x → od→ord (A ∩ x))) + lemma1 : od→ord t o< sup-o (OPwr (Ord (od→ord A))) (λ x lt → od→ord (A ∩ (ord→od x))) + lemma1 = subst (λ k → od→ord k o< sup-o (OPwr (Ord (od→ord A))) (λ x lt → od→ord (A ∩ (ord→od x)))) lemma4 {!!} -- (sup-o< {λ x → od→ord (A ∩ x)} ) lemma2 : odef (in-codomain (OPwr (Ord (od→ord A))) (_∩_ A)) (od→ord t) lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where