Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1144:73b256c5474b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 15 Jan 2023 23:02:36 +0900 |
parents | 2fe1bc2b962f |
children | f8c3537e68a6 |
files | src/Topology.agda |
diffstat | 1 files changed, 22 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 15 19:30:21 2023 +0900 +++ b/src/Topology.agda Sun Jan 15 23:02:36 2023 +0900 @@ -273,28 +273,45 @@ field is-CS : * x ⊆ CS top y : Ordinal - ¬fip : {y : Ordinal } → Subbase (* x) y → o∅ ≡ y + sy : Subbase (* y) o∅ Cex : HOD Cex = record { od = record { def = λ x → CFIP x } ; odmax = osuc (& (CS top)) ; <odmax = λ {x} lt → subst₂ (λ j k → j o≤ k ) &iso refl ( ⊆→o≤ (CFIP.is-CS lt )) } cex : {X : Ordinal } → * X ⊆ OS top → * X covers L → Ordinal cex {X} ox oc = & ( ODC.minimal O Cex fip00) where fip00 : ¬ ( Cex =h= od∅ ) - fip00 cex=0 = fip03 (FIP.is-limit fip (CCX ox) fip02 ?) {!!} where + fip00 cex=0 = fip03 (FIP.is-limit fip (CCX ox) fip02 fip07 ) fip09 where fip03 : {x z : Ordinal } → odef (* x) z → (¬ odef (* x) z) → ⊥ fip03 {x} {z} xz nxz = nxz xz fip02 : {C x : Ordinal} → * C ⊆ * (CX ox) → Subbase (* C) x → o∅ o< x fip02 {C} {x} C<CX sc with trio< x o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) ... | tri> ¬a ¬b c = c - ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; y = x ; ¬fip = ? } )) where + ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; y = C ; sy = subst (λ k → Subbase (* C) k) b sc } )) where fip10 : * C ⊆ CS top - fip10 {w} cw with subst (λ k → odef k w) *iso ( C<CX cw ) - ... | record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ ? , ? ⟫ + fip10 {w} cw = CCX ox ( C<CX cw ) fip01 : Ordinal fip01 = FIP.limit fip (CCX ox) fip02 + fip11 : {w : Ordinal } → {Lw : odef L w} → ¬ ( odef (* (cover oc Lw)) w ) + fip11 {w} {Lw} pw = ? where + fip15 : odef (* X) (cover oc Lw) + fip15 = P∋cover oc {w} {Lw} + fip13 : HOD + fip13 = L \ * w + fip14 : odef (* (CX ox)) (& ( L \ * w )) + fip14 = ? + fip12 : odef ( L \ * w ) fip01 + fip12 = subst (λ k → odef k fip01 ) *iso ( FIP.is-limit fip (CCX ox) fip02 fip14 ) + fip10 : odef ? fip01 + fip10 = FIP.is-limit fip (CCX ox) fip02 ? + fip08 : odef L fip01 + fip08 = FIP.L∋limit fip (CCX ox) fip02 ? fip05 : odef (CS top) fip01 fip05 = ? + fip07 : odef (* (CX ox)) ( cover oc fip08 ) + fip07 = ? + fip09 : ¬ odef (* (cover oc fip08)) (FIP.limit fip (CCX ox) fip02) + fip09 = ? fip04 : Ordinal fip04 = cover oc (cs⊆L top (subst₂ (λ j k → odef j k ) refl (sym &iso) fip05) (FIP.is-limit fip (CCX ox) ? ?) ) ¬CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → * (cex ox oc) ⊆ * (CX ox) → Subbase (* (cex ox oc)) o∅