Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 107:745bee73b444
add assumption
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 16 Jun 2019 19:55:37 +0900 (2019-06-16) |
parents | c31ac67e9ecb |
children | f91e425b341d |
files | ordinal-definable.agda |
diffstat | 1 files changed, 14 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sun Jun 16 12:26:18 2019 +0900 +++ b/ordinal-definable.agda Sun Jun 16 19:55:37 2019 +0900 @@ -164,7 +164,7 @@ c3 lx (OSuc .lx x₁) d not | t | () transitive-Ord : {n : Level } { z y x : Ordinal {suc n} } → Ord z ∋ Ord y → Ord y ∋ Ord x → Ord z ∋ Ord x -transitive-Ord = {!!} +transitive-Ord {n} {z} {y} {x} z∋y x∋y = o<→c< ( ordtrans ( c<→o< {suc n} {x} {y} x∋y ) ( c<→o< {suc n} {y} {z} z∋y ) ) ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x @@ -229,8 +229,14 @@ open _∧_ -ord-od∅ : {n : Level} → o∅ {n} ≡ od→ord (Ord (o∅ {n})) -ord-od∅ = ==→o≡ {!!} +ord-od∅ : {n : Level} → o∅ {suc n} ≡ od→ord (Ord (o∅ {suc n})) +ord-od∅ {n} with trio< {n} (o∅ {suc n}) (od→ord (Ord (o∅ {suc n}))) +ord-od∅ {n} | tri< a ¬b ¬c = ⊥-elim (lemma a) where + lemma : o∅ {suc n } o< (od→ord (Ord (o∅ {suc n}))) → ⊥ + lemma lt with o<→c< lt + lemma lt | t = o<¬≡ _ _ refl t +ord-od∅ {n} | tri≈ ¬a b ¬c = b +ord-od∅ {n} | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) ¬∅=→∅∈ : {n : Level} → { x : Ordinal {suc n} } → ¬ ( Ord x == od∅ {suc n} ) → Ord x ∋ od∅ {suc n} @@ -238,6 +244,7 @@ ¬∅=→∅∈ {n} {x} ne | yes refl = ⊥-elim ( ne (eq-sym (eq-refl) )) ¬∅=→∅∈ {n} {x} ne | no ¬p = o<-subst (∅5 ¬p) ord-od∅ refl + -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) @@ -328,12 +335,13 @@ empty x (case2 ()) power→Ord : (A t : Ordinal) → Power (Ord A) ∋ (Ord t) → {x : OD} → Ord t ∋ x → Ord A ∋ x - power→Ord A t P∋t {x} t∋x = {!!} where + power→Ord A t P∋t {x} t∋x = proj1 lemma-s where minsup : OD minsup = ZFSubset (Ord A) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord A) (ord→od x))))) lemma-t : csuc minsup ∋ Ord t - lemma-t with sup-lb {!!} - ... | c = {!!} + lemma-t = ? -- o<→c< (sup-lb P∋t) + lemma-s : ZFSubset (Ord A) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord A) (ord→od x))))) ∋ x + lemma-s = {!!} power←Ord : (A t : Ordinal) → ({x : OD} → (Ord t ∋ x → Ord A ∋ x)) → Power (Ord A) ∋ Ord t power←Ord = {!!} ---