changeset 607:74c0ae81e482

SupF and ChainMono
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 16 Jun 2022 09:58:13 +0900
parents 9bdb671cbffd
children 6655f03984f9
files src/zorn.agda
diffstat 1 files changed, 17 insertions(+), 68 deletions(-) [+]
line wrap: on
line diff
--- a/src/zorn.agda	Tue Jun 14 18:24:17 2022 +0900
+++ b/src/zorn.agda	Thu Jun 16 09:58:13 2022 +0900
@@ -233,20 +233,17 @@
    field
       x<sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x )
 
-record FChain ( A : HOD ) ( f : Ordinal → Ordinal ) (p c z : Ordinal)   ( x : Ordinal ) : Set n where
-   field
-      fc∨sup :  FClosure A f p x
-      chain∋p : odef (* c) p 
-
-record FSup ( A : HOD ) ( f : Ordinal → Ordinal ) (p c z : Ordinal)   ( x : Ordinal ) : Set n where
+record SupF (A : HOD) : Set n where
    field
-      sup :  (z : Ordinal) → FClosure A f p z → * z < * x 
-      chain∋p : odef (* c) p 
+      chain : Ordinal
+      sup : Ordinal 
+      asup : odef A sup
+      supf-isSup :  IsSup A (* chain) asup
 
-data Fc∨sup (A : HOD) {y : Ordinal} (ay : odef A y)  ( f : Ordinal → Ordinal ) (c z : Ordinal) : (x : Ordinal) → Set n where
-      Finit :  {i : Ordinal} → i ≡ y  → Fc∨sup A ay f c z i
-      Fsup  :  {p x : Ordinal} → p o< x → Fc∨sup A ay f c z p → FSup   A f p c z x → x o< osuc z  →  Fc∨sup A ay f c z x
-      Fc    :  {p x : Ordinal} → p o< x → Fc∨sup A ay f c z p → FChain A f p c z x →  Fc∨sup A ay f c z x
+record ChainMono (A chain : HOD) (z : Ordinal) : Set n where
+      supf : (x : Ordinal) → SupF A 
+      supfz=chain : SupF.chain z ≡ & chain
+      supf-mono : {x y : Ordinal} → x o< y → y o< osuc z →  SupF.sup (supf x ) o< SupF.sup (supf y )
 
 record ZChain ( A : HOD )  (x : Ordinal)  ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where
    field
@@ -260,9 +257,7 @@
       is-max :  {a b : Ordinal } → (ca : odef chain a ) →  b o< osuc z  → (ab : odef A b) 
           → HasPrev A chain ab f ∨  IsSup A chain ab  
           → * a < * b  → odef chain b
-      chain∋sup : (s : HOD) → s ⊆' chain → {b : Ordinal} (ab : odef A b) → b o< osuc z  → IsSup A s ab → odef chain b
-      fc∨sup :  {c : Ordinal } → ( ca : odef chain c )  → Fc∨sup A (chain⊆A chain∋x) f (& chain) z c
-
+      fc∨sup : ChainMono A chain z
 
 record Maximal ( A : HOD )  : Set (Level.suc n) where
    field
@@ -407,15 +402,13 @@
      init-chain : {y x : Ordinal} → (ay : odef A y) (f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → x o< osuc y → ZChain A y f x
      init-chain {y} {x} ay f mf x≤y = record { chain = ys ay f mf ; chain⊆A = λ fx →  A∋fc y f mf fx
                      ; f-total = i-total ; f-next = λ {x} sx → fsuc x sx ; chain∋sup = {!!}
-                     ; initial = {!!} ; f-immediate = {!!} ; chain∋x  = init ay ; is-max = is-max ; fc∨sup = it01 } where
+                     ; initial = {!!} ; f-immediate = {!!} ; chain∋x  = init ay ; is-max = is-max ; fc∨sup = {!!} } where
                i-total : IsTotalOrderSet (ys ay f mf )
                i-total fa fb = subst₂ (λ a b → Tri (a < b) (a ≡ b) (b < a ) ) *iso *iso (fcn-cmp y f mf fa fb)
                is-max : {a b : Ordinal} → odef (ys ay f mf) a →
                     b o< osuc x → (ab : odef A b) → HasPrev A (ys ay f mf) ab f ∨ IsSup A (ys ay f mf) ab →
                     * a < * b → odef (ys ay f mf) b
                is-max {a} {b} yca b≤x ab P a<b = {!!}
-               it01 : {c : Ordinal} → odef (ys ay f mf) c → Fc∨sup A (A∋fc y f mf (init ay)) f (& (ys ay f mf)) x c
-               it01 {c} cc = Fsup {!!} (Finit refl) record { fc∨sup = {!!} ; chain∋p = {!!} } {!!}
                initial : {i : Ordinal} → odef (ys ay f mf) i → * y ≤ * i
                initial {i} (init ai) = case1 refl
                initial .{f x} (fsuc x lt) = {!!}
@@ -440,23 +433,12 @@
           px<x : px o< x
           px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc
 
-          fcs< :  (A : HOD) {w y : Ordinal} (ay : odef A y)   (c z : Ordinal) (x : Ordinal)
-                → z o< w → Fc∨sup  A ay f c z x → Fc∨sup  A ay f c w x 
-          fcs< A ay c z x z<w (Finit x₁) = Finit x₁
-          fcs< A {w} ay c z x z<w (Fsup {p} x₁ FC x₂ x₃) = Fsup x₁ (fcs< A ay c z p z<w FC) record { sup = FSup.sup x₂  ; chain∋p =  FSup.chain∋p x₂  } 
-                 (x<ow x₃ z<w ) where
-              x<ow : x o< osuc z → z o< w → x o< osuc w
-              x<ow x<z z<w = ordtrans x<z (osucc z<w)
-          fcs< A {w} ay c z x z<w (Fc {p} x₁ FC x₂) = Fc x₁ (fcs< A ay c z p z<w FC) record { fc∨sup = FChain.fc∨sup x₂; chain∋p = FChain.chain∋p x₂} 
-
           zc4 : ZChain A y f x 
           zc4 with ODC.∋-p O A (* x)
           ... | no noax =  -- ¬ A ∋ p, just skip
                  record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; initial = ZChain.initial zc0 
                      ; f-total = ZChain.f-total zc0 ; f-next =  ZChain.f-next zc0 ; chain∋sup = {!!}
-                     ; f-immediate =  ZChain.f-immediate zc0 ; chain∋x  = ZChain.chain∋x zc0 ; is-max = zc11 ; fc∨sup = zc12 }  where -- no extention
-                zc12 : {c : Ordinal} → odef (ZChain.chain zc0) c → Fc∨sup A (ZChain.chain⊆A zc0 (ZChain.chain∋x zc0)) f (& (ZChain.chain zc0)) x c
-                zc12 {c} cc = fcs< A (ZChain.chain⊆A zc0 (ZChain.chain∋x zc0)) (& (ZChain.chain zc0)) px c px<x (ZChain.fc∨sup zc0 cc)
+                     ; f-immediate =  ZChain.f-immediate zc0 ; chain∋x  = ZChain.chain∋x zc0 ; is-max = zc11 ; fc∨sup = {!!} }  where -- no extention
                 zc11 : {a b : Ordinal} → odef (ZChain.chain zc0) a → b o< osuc x → (ab : odef A b) →
                     HasPrev A (ZChain.chain zc0) ab f ∨  IsSup A (ZChain.chain zc0) ab →
                             * a < * b → odef (ZChain.chain zc0) b
@@ -475,11 +457,11 @@
                 zc9 :  ZChain A y f x
                 zc9 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next =  ZChain.f-next zc0 -- no extention
                      ; chain∋sup = {!!}
-                     ; initial = ZChain.initial zc0 ; f-immediate =  ZChain.f-immediate zc0 ; chain∋x  = ZChain.chain∋x zc0 ; is-max = zc17 ; fc∨sup = {!!} } 
+                     ; initial = ZChain.initial zc0 ; f-immediate =  ZChain.f-immediate zc0 ; chain∋x  = ZChain.chain∋x zc0 ; is-max = zc17 ; fc∨sup = {!!}  } 
           ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax )
           ... | case1 is-sup = -- x is a sup of zc0 
                 record { chain = schain ; chain⊆A = s⊆A  ; f-total = scmp ; f-next = scnext ; chain∋sup = {!!}
-                     ; initial = scinit ; f-immediate =  simm ; chain∋x  = case1 (ZChain.chain∋x zc0) ; is-max = s-ismax ; fc∨sup = s-fc∨sup} where 
+                     ; initial = scinit ; f-immediate =  simm ; chain∋x  = case1 (ZChain.chain∋x zc0) ; is-max = s-ismax ; fc∨sup = {!!} } where 
                 sup0 : SUP A (ZChain.chain zc0) 
                 sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where
                         x21 :  {y : HOD} → ZChain.chain zc0 ∋ y → (y ≡ * x) ∨ (y < * x)
@@ -502,9 +484,6 @@
                 s⊆A : schain ⊆' A
                 s⊆A {x} (case1 zx) = ZChain.chain⊆A zc0 zx
                 s⊆A {x} (case2 fx) = A∋fc (& sp) f mf fx 
-                s-fc∨sup : {c : Ordinal} → odef schain c → Fc∨sup A (s⊆A (case1 (ZChain.chain∋x zc0))) f (& schain) x c 
-                s-fc∨sup {c} (case1 cx) = {!!}
-                s-fc∨sup {c} (case2 fc) = {!!}
                 cmp  : {a b : HOD} (za : odef chain0 (& a)) (fb : FClosure A f (& sp) (& b)) → Tri (a < b) (a ≡ b) (b < a )
                 cmp {a} {b} za fb  with SUP.x<sup sup0 za | s≤fc (& sp) f mf fb  
                 ... | case1 sp=a | case1 sp=b = tri≈ (λ lt → <-irr (case1 (sym eq)) lt ) eq (λ lt → <-irr (case1 eq) lt ) where
@@ -594,10 +573,7 @@
                 ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } )
                 ... | case2 b=sup = ⊥-elim ( ¬x=sup record { 
                       x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy)  } ) 
-     ... | no ¬ox with trio< x y
-     ... | tri< a ¬b ¬c = init-chain ay f mf {!!}
-     ... | tri≈ ¬a b ¬c = init-chain ay f mf {!!}
-     ... | tri> ¬a ¬b y<x = UnionZ where
+     ... | no ¬ox = UnionZ where
        UnionZ : ZChain A y f x
        UnionZ = record { chain = Uz ; chain⊆A = Uz⊆A  ; f-total = u-total  ; f-next = u-next ; chain∋sup = {!!}
                      ; initial = u-initial ; f-immediate = {!!} ; chain∋x  = {!!} ; is-max = {!!} ; fc∨sup = {!!} }  where --- limit ordinal case
@@ -618,7 +594,7 @@
          u-initial :  {z : Ordinal} → odef Uz z → * y ≤ * z 
          u-initial {z} u = ZChain.initial ( uzc u )  (UZFChain.chain∋z u)
          u-chain∋x :  odef Uz y
-         u-chain∋x = record { u = y ; u<x = y<x ; chain∋z = ZChain.chain∋x (prev y y<x ay ) }
+         u-chain∋x = record { u = y ; u<x = {!!} ; chain∋z = ZChain.chain∋x (prev y {!!} ay ) }
          u-mono :  ( a b : Ordinal ) → b o< x → a o< osuc b → (za : ZChain A y f a) (zb : ZChain A y f b) → ZChain.chain za  ⊆' ZChain.chain zb
          u-mono a b b<x a≤b za zb {i} zai = TransFinite0 {λ i → odef (chain za) i → odef (chain zb) i } uind i zai where
             open ZChain
@@ -626,35 +602,8 @@
                  → ((j : Ordinal) → j o< i →  odef (chain za) j → odef (chain zb) j)
                  → odef (chain za) i → odef (chain zb) i
             uind i previ zai = um01 where
-                FC : Fc∨sup A (chain⊆A za (chain∋x za)) f (& (chain za)) a i
-                FC = fc∨sup za zai
                 um01 : odef (chain zb) i
-                um01 with FC
-                ... | Finit i=y = subst (λ k → odef (chain zb) k ) (sym i=y) ( chain∋x zb )
-                ... | Fsup {p} {i} p<i pFC sup i≤b  = cb∋i where
-                     i-asup : (z : Ordinal) → FClosure A f p z → * z < * i
-                     i-asup = FSup.sup sup
-                     um06 : odef (chain za) p
-                     um06 = subst (λ k → odef k p ) *iso ( FSup.chain∋p sup )
-                     -- FClosure A f p is a subset of chain zb
-                     um07 : (i2 : Ordinal) → FClosure A f p i2 → odef (chain zb) i2
-                     um07 i2 (init ap ) = previ p p<i um06  
-                     um07 i (fsuc j fc) = f-next zb ( um07 j fc )
-                     um08 : odef (chain zb) p
-                     um08 = previ p p<i um06
-                     cl : HOD
-                     cl = record { od = record { def = λ x → FClosure A f p x } ; odmax = & A ; <odmax = cl<A } where
-                         cl<A : {i2 : Ordinal} → FClosure A f p i2 → i2 o< & A
-                         cl<A {i2} cl = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k) (sym &iso) (A∋fc p f mf cl) ) )
-                     cb∋i : odef (chain zb) i
-                     cb∋i = ZChain.chain∋sup zb cl (λ {i2} lt → um07 i2 lt) (chain⊆A za zai) {!!} record { x<sup = λ {i2} cl → case2 (i-asup i2 cl) } 
-                ... | Fc {p} {i} p<i pFC FC with (FChain.fc∨sup FC) 
-                ... | fc = um02 i fc where
-                     um02 : (i2 : Ordinal) → FClosure A f p i2 → odef (chain zb) i2
-                     um02 i2 (init ap ) = previ p p<i um04  where
-                        um04 : odef (chain za) p
-                        um04 = subst (λ k → odef k p ) *iso ( FChain.chain∋p FC )
-                     um02 i (fsuc j fc) = f-next zb ( um02 j fc )
+                um01 = ?
          u-total : IsTotalOrderSet Uz
          u-total {x} {y} ux uy  with trio< (UZFChain.u ux) (UZFChain.u uy)
          ... | tri< a ¬b ¬c = ZChain.f-total (uzc uy) (u-mono (UZFChain.u ux) (UZFChain.u uy)