Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 635:761bf71e5594
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Jun 2022 10:07:58 +0900 |
parents | fd7dc6277480 |
children | 844eb13a5a39 |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 21 09:45:12 2022 +0900 +++ b/src/zorn.agda Tue Jun 21 10:07:58 2022 +0900 @@ -680,20 +680,24 @@ → (ind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x ) → ∀ (x : Ordinal) → ind x (λ y _ → TransFinite ind y ) ≡ TransFinite ind x - record ZChain1 (supf : (z : Ordinal ) → HOD ) ( z : Ordinal ) : Set (Level.suc n) where + record ZChain1 ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) ( z : Ordinal ) : Set (Level.suc n) where + field + zc : ZChain A y f z + supf = ZChain.supf zc field chain-mono : {x y : Ordinal} → x o≤ y → y o≤ z → supf x ⊆' supf y f-total : {x : Ordinal} → x o≤ z → IsTotalOrderSet (supf x) SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) - → (z : Ordinal) → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) z - SZ1 f mf {y} ay z = {!!} where -- TransFinite {λ w → ZChain1 ( λ y → ZChain.chain (TransFinite (ind f mf ay ) y) ) w} indp z where + → (z : Ordinal) → ZChain1 f mf ay z + SZ1 f mf {y} ay z = record { zc = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) z + ; chain-mono = {!!} ; f-total = {!!} } where -- TransFinite {λ w → ZChain1 f mf ay w} indp z where indp : (x : Ordinal) → - ((y₁ : Ordinal) → y₁ o< x → ZChain1 (λ y₂ → ZChain.chain (TransFinite (ind f mf ay) y₂)) y₁) → - ZChain1 (λ y₁ → ZChain.chain (TransFinite (ind f mf ay) y₁)) x + ((y₁ : Ordinal) → y₁ o< x → ZChain1 f mf ay y₁) → + ZChain1 f mf ay x indp x prev with Oprev-p x ... | yes op = sz02 where - sz02 : ZChain1 (λ y₁ → ZChain.chain (TransFinite (ind f mf ay) y₁)) x + sz02 : ZChain1 f mf ay x sz02 with ODC.∋-p O A (* x) ... | no noax = {!!} ... | yes noax = {!!} @@ -719,7 +723,7 @@ zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ zorn04 : ZChain A (& s) (cf nmx) (& A) - zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) + zorn04 = ZChain1.zc ( SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) (& A)) total : IsTotalOrderSet (ZChain.chain zorn04) total = ZChain1.f-total (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as) (& A)) o≤-refl