Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 771:7679fef53073
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 26 Jul 2022 03:37:25 +0900 |
parents | 798d8b8c36b1 |
children | 068cba4ee934 |
files | src/zorn.agda |
diffstat | 1 files changed, 13 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jul 26 00:09:11 2022 +0900 +++ b/src/zorn.agda Tue Jul 26 03:37:25 2022 +0900 @@ -630,7 +630,7 @@ inititalChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → ZChain A f mf ay o∅ inititalChain f mf {y} ay = record { supf = isupf ; chain⊆A = λ lt → proj1 lt ; chain∋init = cy - ; csupf = λ {z} → csupf {z} ; fcy<sup = λ u<0 → ⊥-elim ( ¬x<0 u<0 ) + ; csupf = λ {z} → csupf {z} ; fcy<sup = λ u<0 → ⊥-elim ( ¬x<0 u<0 ) ; supf-mono = λ _ → o≤-refl ; initial = isy ; f-next = inext ; f-total = itotal ; sup=u = λ _ b<0 → ⊥-elim (¬x<0 b<0) ; order = λ b<0 → ⊥-elim (¬x<0 b<0) } where spi = & (SUP.sup (ysup f mf ay)) isupf : Ordinal → Ordinal @@ -793,10 +793,18 @@ zc11 : odef A (ZChain.supf ozc z) ∧ UChain A f mf ay psupf x (ZChain.supf ozc z) zc11 with zc12 ... | ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ - ... | ⟪ az , ch-is-sup u is-sup fc ⟫ = ⟪ az , ch-is-sup z - zc14 (subst (λ k → FClosure A f k (ZChain.supf ozc z)) (sym eq1) (init az)) ⟫ where - zc14 : ChainP A f mf ay psupf z (ZChain.supf ozc z) - zc14 = ? + ... | ⟪ az , ch-is-sup u is-sup fc ⟫ = ⟪ az , z13 fc is-sup ⟫ where + z13 : FClosure A f (ZChain.supf ozc u ) (ZChain.supf ozc z ) → ChainP A f mf ay (ZChain.supf ozc) u (ZChain.supf ozc z ) + → UChain A f mf ay psupf x (ZChain.supf ozc z ) + z13 fc is-sup = ? + + -- ch-is-sup z + -- zc14 (subst (λ k → FClosure A f k (ZChain.supf ozc z)) (sym eq1) (init az)) ⟫ where + -- zc14 : ChainP A f mf ay psupf z (ZChain.supf ozc z) + -- zc14 = record { csupz = ? ; supfu=u = ? ; fcy<sup = ? ; order = ? } where + -- csupz : FClosure A f (psupf z) (ZChain.supf ozc z) + -- csupz = ? + ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ SUP.A∋maximal usup , ch-is-sup x zc15 (subst (λ k → FClosure A f k spu) zc17 (init (SUP.A∋maximal usup))) ⟫ where zc15 : ChainP A f mf ay psupf x spu