Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1423:77a3de21ee50
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jul 2023 14:26:20 +0900 |
parents | ee40c5b5cefe |
children | a444ea176011 |
files | src/cardinal.agda |
diffstat | 1 files changed, 18 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Sat Jul 01 10:19:03 2023 +0900 +++ b/src/cardinal.agda Sat Jul 01 14:26:20 2023 +0900 @@ -247,6 +247,11 @@ ... | case1 record { y = y ; ay = ay ; x=fy = x=fy } = sym ( inject g _ _ (proj1 ( subst (λ k → odef k x) (*iso) cx )) ay x=fy ) ... | case2 ¬ism = ⊥-elim (¬ism record { y = x ; ay = proj1 ( subst (λ k → odef k x) (*iso) cx ) ; x=fy = refl }) + a-UC-iso11 : (x : Ordinal ) → (cx : odef (* (b - (& (Image (& UC) (Injection-⊆ UC⊆a f) )))) x ) + → (ib : odef (* (& a-UC)) (fba x ( proj1 ( subst (λ k → odef k x) (*iso) cx )) )) + → i→ be10 ( i→ be11 x cx ) ib ≡ x + a-UC-iso11 x cx ib = trans ? (a-UC-iso1 x cx) + -- C n → f (C n) fU : (x : Ordinal) → ( odef (* (& UC)) x) → Ordinal fU x lt = be03 where @@ -411,31 +416,24 @@ ... | case1 (next-gf record { y = y ; ay = ay ; x=fy = x=fy } c1) = ⊥-elim (x₁ record { y = y ; ay = subst (λ k → odef k y) (sym *iso) c1 ; x=fy = inject g _ _ _ (b∋fab y _) (trans x=fy (fba-eq (fab-eq refl))) }) - ... | case2 c2 = be80 where + ... | case2 c2 = ? where -- a-UC-iso11 x be79 (subst (λ k → odef k (fba x (proj1 (subst (λ k₁ → odef k₁ x) *iso be79 ) ))) (sym *iso) be77 ) where be79 : odef (* (b - (& (Image (& UC) (Injection-⊆ UC⊆a f) )) )) x - be79 = subst (λ k → odef k x) (sym *iso) ⟪ bx , subst (λ k → odef k x → ⊥) (sym *iso) x₁ ⟫ + be79 = proj1 (subst (λ k → odef k x) *iso (subst (λ k → odef k x) (sym *iso) ⟪ bx , subst (λ k → odef k x → ⊥) (sym *iso) x₁ ⟫)) bx1 : odef (* b) x bx1 = proj1 (subst (λ k → odef k x) *iso be79) - be77 : odef (Image b g) (fba x (proj1 (subst (λ k → odef k x) *iso be79)) ) - be77 = nimg (a∋fba x (proj1 (subst (λ k → odef k x) *iso be79))) c2 - be80 : g⁻¹ ? ? ≡ x - be80 = ? - - -- with ODC.p∨¬p O ( IsImage b a g (fba x bx )) - -- ... | case1 (img @ record { y = y ; ay = ay ; x=fy = x=fy }) = trans (ImageUnique ? ? ) (sym ( inject g _ _ bx ay x=fy )) where - -- be79 : odef (* b) x - -- be79 = proj1 (subst (λ k → OD.def (od k) x) *iso (subst (λ k → OD.def (od k) x) (sym *iso) - -- ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫)) - -- be78 : odef (Image b g) ? - -- be78 = nimg (a∋fba ? ?) c2 - -- be77 : odef (Image b g) (fba x (proj1 (subst (λ k → OD.def (od k) x) *iso (subst (λ k → OD.def (od k) x) (sym *iso) - -- ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫)))) - -- be77 = nimg (a∋fba ? ?) c2 - -- ... | case2 ¬img = ? - + be77 : odef a-UC (fba x bx1 ) + be77 = subst (λ k → odef k (fba x bx)) *iso (subst (λ k → odef k (fba x bx)) (sym *iso) ⟪ bx , subst (λ k → odef k (fba x bx) → ⊥) (sym *iso) x₁ ⟫) + be80 : odef (* (& a-UC)) (fba x bx1 ) + be80 = + (subst (λ k → odef k (fba x (proj1 (subst (λ k₁ → OD.def (od k₁) x) *iso (subst (λ k₁ → OD.def (od k₁) x) (sym *iso) + ⟪ bx , subst (λ k₁ → OD.def (od k₁) x → ⊥) (sym *iso) x₁ ⟫))))) + (sym *iso) + ⟪ proj1 (subst₂ (λ A → OD.def (od A)) *iso refl (subst (λ k → OD.def (od k) (fba x (proj1 + (subst (λ k₁ → OD.def (od k₁) x) *iso (subst (λ k₁ → OD.def (od k₁) x) (sym *iso) + ⟪ bx , subst (λ k₁ → OD.def (od k₁) x → ⊥) (sym *iso) x₁ ⟫))))) (sym *iso) ⟪ a∋fba x (proj1 (subst (λ k → OD.def (od k) x) *iso (subst (λ k → OD.def (od k) x) (sym *iso) ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫))) , ? ⟫)) , c2 ⟫) be73 : (x : Ordinal) (ax : odef (* a) x) → (cc0 : CC0 x ) → h⁻¹ (be70 x ax cc0) (cc11 ax cc0) ≡ x be73 x ax (case1 x₁) with cc11 ax (case1 x₁) - ... | case1 c1 = ? where + ... | case1 c1 = trans ? be76 where be76 : IsImage.y (subst (λ k → odef k (fU x (subst (λ k₁ → odef k₁ x) (sym *iso) x₁))) *iso (be04 (subst (λ k → odef k x) (sym *iso) x₁))) ≡ x be76 = UC-iso0 x (subst (λ k → odef k x) (sym *iso) x₁ ) ... | case2 c2 = ?