Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 673:79616ba278c0
new chain
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 08 Jul 2022 17:42:29 +0900 |
parents | 6a8d13b02a50 |
children | a48845e246e4 |
files | src/zorn.agda |
diffstat | 1 files changed, 34 insertions(+), 59 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Jul 03 18:59:49 2022 +0900 +++ b/src/zorn.agda Fri Jul 08 17:42:29 2022 +0900 @@ -253,45 +253,25 @@ UnionCF : (A : HOD) (x : Ordinal) (chainf : (z : Ordinal ) → z o< x → HOD ) → HOD UnionCF A x chainf = record { od = record { def = λ z → odef A z ∧ UChain x chainf z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } -data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) : Ordinal → HOD → Set (Level.suc n) where - ch-init : Chain A f mf ay o∅ record { od = record { def = λ z → FClosure A f y z } ; odmax = & A ; <odmax = λ {y} sy → ? } - ch-noax : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (noax : ¬ odef A x ) (c : Chain A f mf ay (Oprev.oprev op) chain) → Chain A f mf ay x chain - ch-hasprev : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (ax : odef A x ) - ( c : Chain A f mf ay (Oprev.oprev op) chain) ( h : HasPrev A chain ax f ) → Chain A f mf ay x chain - ch-is-sup : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) - ( c : Chain A f mf ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( sup : IsSup A chain ax ) → Chain A f mf ay x - record { od = record { def = λ z → odef A z ∧ (odef chain z ∨ (FClosure A f x z)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) - ( c : Chain A f mf ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f mf ay x chain - ch-noax-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( noax : ¬ odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → Chain A f mf ay x (UnionCF A x chainf ) - ch-hasprev-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → ( h : HasPrev A (UnionCF A x chainf) ax f ) - → Chain A f mf ay x (UnionCF A x chainf ) - ch-is-sup-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → ( nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) ( sup : IsSup A (UnionCF A x chainf) ax ) - → Chain A f mf ay x - record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f x z ) } - ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - ch-skip-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) - → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x )) - → (nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) (nsup : ¬ IsSup A (UnionCF A x chainf) ax ) - → Chain A f mf ay x (UnionCF A x chainf) - -ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) → (chain : HOD ) → Chain A f mf ay (& A) chain → (x : Ordinal) → x o< & A → HOD -ChainF A f mf {y} ay chain Ch x x<a = {!!} +data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) : Ordinal → Ordinal → Set n where + ch-init : (x z : Ordinal) → x ≡ o∅ → FClosure A f y z → Chain A f mf ay x z + ch-is-sup : {x z : Ordinal } ( ax : odef A x ) + → ( is-sup : (x1 w : Ordinal) → x1 o< x → Chain A f mf ay x1 w → w << x ) → ( fc : FClosure A f x z ) → Chain A f mf ay x z record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where field - chain : HOD - chain-uniq : Chain A f mf ay z chain + psup : Ordinal + p≤z : psup o≤ z + pchain : {px : Ordinal} → px o≤ z → (w : Ordinal) → Chain A f mf ay px w + chain-mono : (px : Ordinal) → (x≤p : px o≤ psup ) → (w : Ordinal ) → Chain A f mf ay px w → Chain A f mf ay psup w + +ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) + → (z : Ordinal) → ZChain1 A f mf ay (& A) → HOD +ChainF A f mf {y} ay z zc = record { od = record { def = λ x → odef A x ∧ Chain A f mf ay (ZChain1.psup zc) x } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f mf ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where chain : HOD - chain = ZChain1.chain zc0 + chain = ChainF A f mf ay z zc0 field chain⊆A : chain ⊆' A chain∋init : odef chain init @@ -449,32 +429,32 @@ sc = prev px px<x sc4 : ZChain1 A f mf ay x sc4 with ODC.∋-p O A (* x) - ... | no noax = record { chain = chain sc ; chain-uniq = ch-noax op (subst (λ k → ¬ odef A k) &iso noax) ( chain-uniq sc ) } - ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain1.chain sc ) ax f ) - ... | case1 pr = record { chain = chain sc ; chain-uniq = ch-hasprev op (subst (λ k → odef A k) &iso ax) ( chain-uniq sc ) - record { y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = sc6 } } where + ... | no noax = ? + ... | yes ax with ODC.p∨¬p O ( HasPrev A ? ax f ) + ... | case1 pr = ? where -- record { chain = chain sc ; chain-uniq = ch-hasprev op (subst (λ k → odef A k) &iso ax) ( chain-uniq sc ) + -- record { y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = sc6 } } where sc6 : x ≡ f (HasPrev.y pr) sc6 = subst (λ k → k ≡ f (HasPrev.y pr) ) &iso ( HasPrev.x=fy pr ) - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc ) ax ) - ... | case1 is-sup = record { chain = schain ; chain-uniq = sc9 } where + ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A ? ax ) + ... | case1 is-sup = ? where -- record { chain = schain ; chain-uniq = sc9 } where schain : HOD - schain = record { od = record { def = λ z → odef A z ∧ ( odef (ZChain1.chain sc ) z ∨ (FClosure A f x z)) } - ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - sc7 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f + schain = ? -- record { od = record { def = λ z → odef A z ∧ ( odef (ZChain1.chain sc ) z ∨ (FClosure A f x z)) } + -- ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } + sc7 : ¬ HasPrev A ? (subst (λ k → odef A k) &iso ax) f sc7 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } - sc9 : Chain A f mf ay x schain - sc9 = ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc7 - record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k )) &iso (IsSup.x<sup is-sup lt) } - ... | case2 ¬x=sup = record { chain = chain sc ; chain-uniq = ch-skip op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc17 sc10 } where - sc17 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f + -- sc9 : Chain A f mf ay x schain + -- sc9 = ? -- ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc7 + -- record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k )) &iso (IsSup.x<sup is-sup lt) } + ... | case2 ¬x=sup = ? where --- record { chain = chain sc ; chain-uniq = ch-skip op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc17 sc10 } where + sc17 : ¬ HasPrev A ? (subst (λ k → odef A k) &iso ax) f sc17 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } - sc10 : ¬ IsSup A (chain sc) (subst (λ k → odef A k) &iso ax) + sc10 : ¬ IsSup A ? (subst (λ k → odef A k) &iso ax) sc10 not = ¬x=sup ( record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k ) ) (sym &iso) ( IsSup.x<sup not lt ) } ) ... | no ¬ox = sc4 where chainf : (z : Ordinal) → z o< x → HOD - chainf z z<x = ZChain1.chain ( prev z z<x ) - chainq : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x ) - chainq z z<x = ZChain1.chain-uniq ( prev z z<x) + chainf z z<x = ? -- Chain1.chain ( prev z z<x ) + -- chainq : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f mf ay z ( chainf z z<x ) + -- chainq z z<x = ? -- ZChain1.chain-uniq ( prev z z<x) sc4 : ZChain1 A f mf ay x sc4 with ODC.∋-p O A (* x) ... | no noax = record { chain = UnionCF A x chainf ; chain-uniq = ? } -- ch-noax-union ¬ox (subst (λ k → ¬ odef A k) &iso noax) ? } @@ -493,7 +473,7 @@ -- px = Oprev.oprev op supf : Ordinal → HOD - supf x = ZChain1.chain zc0 + supf x = ? -- ZChain1.chain zc0 zc : ZChain A f mf ay zc0 (Oprev.oprev op) zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px @@ -661,7 +641,7 @@ ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case supf : Ordinal → HOD - supf x = ZChain1.chain zc0 + supf x = ? -- Z?Chain1.chain zc0 uzc : {z : Ordinal} → (u : UChain x {!!} z) → ZChain A f mf ay zc0 (UChain.u u) uzc {z} u = prev (UChain.u u) (UChain.u<x u) Uz : HOD @@ -678,7 +658,7 @@ u-chain∋init = {!!} -- case2 ( init ay ) supf0 : Ordinal → HOD supf0 z with trio< z x - ... | tri< a ¬b ¬c = ZChain1.chain zc0 + ... | tri< a ¬b ¬c = ? -- ZChain1.chain zc0 ... | tri≈ ¬a b ¬c = Uz ... | tri> ¬a ¬b c = Uz u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w @@ -690,11 +670,6 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl - seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain zc0 ≡ supf0 b - seq<x {b} b<x with trio< b x - ... | tri< a ¬b ¬c = {!!} -- cong (λ k → (ZChain1.chain zc0) o<-irr -- b<x ≡ a - ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) - ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y ord≤< {x} {y} {z} x<z z≤y with osuc-≡< z≤y ... | case1 z=y = subst (λ k → x o< k ) z=y x<z