Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1343:7af7fda7d669
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 17 Jun 2023 09:31:00 +0900 |
parents | 884f5fcd41dc |
children | e5b66225eec4 |
files | src/bijection.agda |
diffstat | 1 files changed, 15 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Sat Jun 17 08:20:04 2023 +0900 +++ b/src/bijection.agda Sat Jun 17 09:31:00 2023 +0900 @@ -670,10 +670,6 @@ ... | tri> ¬a ¬b c₁ | tri≈ ¬a₁ b ¬c | case2 le = case2 (≤-trans le refl-≤s ) ... | tri> ¬a ¬b c₁ | tri> ¬a₁ ¬b₁ c₂ | u = u - -- - -- c n < i means j < suc n → fun← an j < c n, we cannot have more else - -- ∃ j → j < suc n → c n < fun← an j - -- c1-max : (n i : ℕ) → c n < i → c1 n i ≡ suc n c1-max zero i cn<i with <-cmp (fun→ cn (g (f (fun← an zero)))) i ... | tri< a ¬b ¬c = refl @@ -706,26 +702,22 @@ ani : (i : ℕ) → ℕ ani i = fun→ cn (g (f (fun← an i))) + i-in-n : (i n : ℕ) → i ≤ n → Set + i-in-n i n i≤n = c1 n (suc (c n)) ≤ i + --- c1 n i - c1+1 : (n i : ℕ) → (isa : Is A C (λ x → g (f x)) (fun← cn i)) → fun→ an (Is.a isa) < suc n → suc (c1 n i) ≡ c1 n (suc i) - c1+1 0 i isa a<n with <-cmp (ani 0) i | <-cmp (ani 0) (suc i) - ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ? - ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ? - ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c₁ = ? - ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ? - ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ? - ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c₁ = ? - ... | tri> ¬a ¬b c₁ | tri< a ¬b₁ ¬c = ? - ... | tri> ¬a ¬b c₁ | tri≈ ¬a₁ b ¬c = ? - ... | tri> ¬a ¬b c₁ | tri> ¬a₁ ¬b₁ c₂ = ? - c1+1 (suc n) i isa a<n with <-cmp (ani (suc n)) i | <-cmp (ani (suc n)) (suc i) - ... | s | tri< a ¬b ¬c = ? - ... | tri< a ¬b ¬c₁ | tri≈ ¬a b ¬c = ? - ... | tri≈ ¬a₁ b₁ ¬c₁ | tri≈ ¬a b ¬c = ? - ... | tri> ¬a₁ ¬b c₁ | tri≈ ¬a b ¬c = ? - ... | tri< a ¬b₁ ¬c | tri> ¬a ¬b c₁ = ? - ... | tri≈ ¬a₁ b ¬c | tri> ¬a ¬b c₁ = ? - ... | tri> ¬a₁ ¬b₁ c₂ | tri> ¬a ¬b c₁ = ? + c1+1P : (n i : ℕ) → (isa : Is A C (λ x → g (f x)) (fun← cn i)) → Set + c1+1P n i isa with <-cmp n (fun→ an (Is.a isa)) + ... | tri< n<an ¬b ¬c = c1 n i ≡ c1 n (suc i) + ... | tri≈ ¬a n=an ¬c = suc (c1 n i) ≡ c1 n (suc i) + ... | tri> ¬a ¬b an<n = suc (c1 n i) ≡ c1 n (suc i) + + c1+1 : (n i : ℕ) → (isa : Is A C (λ x → g (f x)) (fun← cn i)) + → c1+1P n i isa + c1+1 n i isa with <-cmp n (fun→ an (Is.a isa)) + ... | tri< j<an ¬b ¬c = ? + ... | tri≈ ¬a j=an ¬c = ? + ... | tri> ¬a ¬b an<j = ? record maxAC (n : ℕ) : Set where field