Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1142:7b924ef65373
Topology clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 15 Jan 2023 09:05:22 +0900 |
parents | e9a05e7c4e35 |
children | 2fe1bc2b962f |
files | src/Topology.agda |
diffstat | 1 files changed, 67 insertions(+), 115 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Jan 14 12:36:07 2023 +0900 +++ b/src/Topology.agda Sun Jan 15 09:05:22 2023 +0900 @@ -59,13 +59,13 @@ open Topology Cl : {L : HOD} → (top : Topology L) → (A : HOD) → A ⊆ L → HOD -Cl {L} top A A⊆L = record { od = record { def = λ x → (c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x } - ; odmax = & L ; <odmax = {!!} } +Cl {L} top A A⊆L = record { od = record { def = λ x → odef L x ∧ ( (c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x ) } + ; odmax = & L ; <odmax = odef∧< } ClL : {L : HOD} → (top : Topology L) → {f : L ⊆ L } → Cl top L f ≡ L ClL {L} top {f} = ==→o≡ ( record { eq→ = λ {x} ic - → subst (λ k → odef k x) *iso (ic (& L) (CS∋L top) (subst (λ k → L ⊆ k) (sym *iso) ( λ x → x))) - ; eq← = λ {x} lx c cs l⊆c → l⊆c lx } ) + → subst (λ k → odef k x) *iso ((proj2 ic) (& L) (CS∋L top) (subst (λ k → L ⊆ k) (sym *iso) ( λ x → x))) + ; eq← = λ {x} lx → ⟪ lx , ( λ c cs l⊆c → l⊆c lx) ⟫ } ) -- Subbase P -- A set of countable intersection of P will be a base (x ix an element of the base) @@ -159,6 +159,47 @@ tp06 : * b ⊆ Union q tp06 {z} bz = record { owner = y ; ao = qy ; ox = b⊆u bz } +-- Product Topology + +open ZFProduct + +-- Product Topology is not +-- ZFP (OS TP) (OS TQ) (box) + +record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where + field + p q : Ordinal + op : odef (OS TP) p + prod : x ≡ & (ZFP (* p) Q ) + +record BaseQ (P : HOD) {Q : HOD} (TQ : Topology Q ) (x : Ordinal) : Set n where + field + p q : Ordinal + oq : odef (OS TQ) q + prod : x ≡ & (ZFP P (* q )) + +pbase⊆PL : {P Q : HOD} → (TP : Topology P) → (TQ : Topology Q) → {x : Ordinal } → BaseP TP Q x ∨ BaseQ P TQ x → odef (Power (ZFP P Q)) x +pbase⊆PL {P} {Q} TP TQ {z} (case1 record { p = p ; q = q ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where + tp01 : odef (Power (ZFP P Q)) (& (ZFP (* p) Q)) + tp01 w wz with subst (λ k → odef k w ) *iso wz + ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) tp03 ) (subst (λ k → odef Q k ) (sym &iso) qb ) where + tp03 : odef P a + tp03 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op) pa +pbase⊆PL {P} {Q} TP TQ {z} (case2 record { p = p ; q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where + tp01 : odef (Power (ZFP P Q)) (& (ZFP P (* q) )) + tp01 w wz with subst (λ k → odef k w ) *iso wz + ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) pa ) (subst (λ k → odef Q k ) (sym &iso) tp03 ) where + tp03 : odef Q b + tp03 = os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq) qb + +pbase : {P Q : HOD} → Topology P → Topology Q → HOD +pbase {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (Power (ZFP P Q)) ; <odmax = tp00 } where + tp00 : {y : Ordinal} → BaseP TP Q y ∨ BaseQ P TQ y → y o< & (Power (ZFP P Q)) + tp00 {y} bpq = odef< ( pbase⊆PL TP TQ bpq ) + +ProductTopology : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) +ProductTopology {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (pbase TP TQ) record { P⊆PL = pbase⊆PL TP TQ } + -- covers record _covers_ ( P q : HOD ) : Set n where @@ -228,7 +269,7 @@ -- this defines finite cover finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal finCover {X} ox oc = & ( Replace' (* (cex ox oc)) (λ z xz → L \ z )) - -- create Finite-∪ from cex + -- create Finite-∪ from cex isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp) isFinite = {!!} -- is also a cover @@ -239,59 +280,14 @@ Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top → FIP top Compact→FIP = {!!} --- Product Topology - -open ZFProduct - --- Product Topology is not --- ZFP (OS TP) (OS TQ) (box) - -record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where - field - p q : Ordinal - op : odef (OS TP) p - prod : x ≡ & (ZFP (* p) Q ) - -record BaseQ (P : HOD) {Q : HOD} (TQ : Topology Q ) (x : Ordinal) : Set n where - field - p q : Ordinal - oq : odef (OS TQ) q - prod : x ≡ & (ZFP P (* q )) - -pbase⊆PL : {P Q : HOD} → (TP : Topology P) → (TQ : Topology Q) → {x : Ordinal } → BaseP TP Q x ∨ BaseQ P TQ x → odef (Power (ZFP P Q)) x -pbase⊆PL {P} {Q} TP TQ {z} (case1 record { p = p ; q = q ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where - tp01 : odef (Power (ZFP P Q)) (& (ZFP (* p) Q)) - tp01 w wz with subst (λ k → odef k w ) *iso wz - ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) tp03 ) (subst (λ k → odef Q k ) (sym &iso) qb ) where - tp03 : odef P a - tp03 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op) pa -pbase⊆PL {P} {Q} TP TQ {z} (case2 record { p = p ; q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where - tp01 : odef (Power (ZFP P Q)) (& (ZFP P (* q) )) - tp01 w wz with subst (λ k → odef k w ) *iso wz - ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) pa ) (subst (λ k → odef Q k ) (sym &iso) tp03 ) where - tp03 : odef Q b - tp03 = os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq) qb - -pbase : {P Q : HOD} → Topology P → Topology Q → HOD -pbase {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (Power (ZFP P Q)) ; <odmax = tp00 } where - tp00 : {y : Ordinal} → BaseP TP Q y ∨ BaseQ P TQ y → y o< & (Power (ZFP P Q)) - tp00 {y} bpq = odef< ( pbase⊆PL TP TQ bpq ) - -_Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) -_Top⊗_ {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (pbase TP TQ) record { P⊆PL = pbase⊆PL TP TQ } - -- existence of Ultra Filter open Filter -- Ultra Filter has limit point ---- F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (NEG : {p : HOD} → L ∋ p → L ∋ ( P \ p)) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) --- → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) → (0<F : o∅ o< & (filter F)) → (proper : ¬ (filter F ∋ od∅)) --- → ultra-filter ( MaximumFilter.mf (F→Maximum {L} {P} LP NEG CAP F 0<L 0<F proper ) - -record UFLP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) - (FL : filter F ∋ P) : Set (suc (suc n)) where +record UFLP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (F : Filter {L} {P} LP ) + (FL : filter F ∋ P) (ultra : ultra-filter F ) : Set (suc (suc n)) where field limit : Ordinal P∋limit : odef P limit @@ -299,71 +295,27 @@ -- FIP is UFL +UFLP→FIP : {P : HOD} (TP : Topology P) → {L : HOD} (LP : L ⊆ Power P ) → + ( (F : Filter {L} {P} LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP TP LP F FP UF ) → FIP TP +UFLP→FIP {P} TP {L} LP uflp = record { limit = uf00 ; is-limit = {!!} } where + fip : {X : Ordinal} → * X ⊆ CS TP → * X ∋ P → Set n + fip {X} CSX XP = {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x + F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (XP : * X ∋ P ) → fip {X} CSX XP → Filter {L} {P} LP + F = ? + uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (XP : * X ∋ P ) → fip {X} CSX XP → Ordinal + uf00 = ? + FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP - → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) → UFLP TP LP F FP -FIP→UFLP {P} TP fip {L} LP F FP = record { limit = FIP.limit fip fip00 CFP fip01 ; P∋limit = FIP.L∋limit fip fip00 CFP fip01 ; is-limit = fip02 } - where - MX : MaximumFilter LP F - MX = F→Maximum {L} {P} LP ? ? F ? FP ? - MF : Filter LP - MF = MaximumFilter.mf MX - uf : ultra-filter {L} {P} {LP} MF - uf = F→ultra {L} {P} LP ? ? F ? ? ? - fip03 : {z : HOD} → filter F ∋ z → z ⊆ P - fip03 {z} fz {x} zx = LP ( f⊆L F fz ) x (subst (λ k → odef k x) (sym *iso) zx ) - CF : Ordinal - CF = & ( Replace' (filter F) (λ z fz → Cl TP z (fip03 fz)) ) where - CFP : * CF ∋ P -- filter F ∋ P and Cl P ≡ P - CFP = subst₂ (λ j k → odef j k) (sym *iso) refl record { z = & P ; az = FP ; x=ψz = cong (&) fip04 } where - fip04 : P ≡ (Cl TP (* (& P)) (fip03 (subst (odef (filter F)) (sym &iso) FP))) - fip04 = ==→o≡ ( record { eq→ = {!!} ; eq← = {!!} } ) - fip00 : * CF ⊆ CS TP -- replaced - fip00 = {!!} - fip01 : {C x : Ordinal} → * C ⊆ * CF → Subbase (* C) x → o∅ o< x - fip01 {C} {x} CCF (gi Cx) = {!!} -- filter is proper .i.e it contains no od∅ - fip01 {C} {.(& (* _ ∩ * _))} CCF (g∩ sb sb₁) = {!!} - fip02 : {o : Ordinal} → odef (OS TP) o → odef (* o) (FIP.limit fip fip00 CFP fip01) → * o ⊆ filter F - fip02 {p} oo ol {x} ox = ? where - fip04 : odef {!!} (FIP.limit fip fip00 CFP fip01) - fip04 = FIP.is-limit fip fip00 CFP fip01 {!!} - fip05 : ( filter MF ∋ (* x) ) ∨ ( filter MF ∋ ( P \ (* x)) ) - fip05 = ultra-filter.ultra uf {!!} {!!} - fip06 : odef (filter MF) x - fip06 with fip05 - ... | case1 lt = subst (λ k → odef (filter MF) k ) &iso lt - ... | case2 nlt = {!!} - - -UFLP→FIP : {P : HOD} (TP : Topology P) → - ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) → UFLP TP LP F FP ) → FIP TP -UFLP→FIP {P} TP uflp = record { limit = {!!} ; is-limit = {!!} } + → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F FP UF +FIP→UFLP {P} TP fip {L} LP F FP UF = ? -- product topology of compact topology is compact -Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (TP Top⊗ TQ) -Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (TP Top⊗ TQ) (UFLP→FIP (TP Top⊗ TQ) uflp ) where +Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) +Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) LPQ uflp ) where + L = pbase TP TQ + LPQ = pbase⊆PL TP TQ -- Product of UFL has limit point - uflp : {L : HOD} (LPQ : L ⊆ Power (ZFP P Q)) (F : Filter LPQ) (LF : filter F ∋ ZFP P Q) - → UFLP (TP Top⊗ TQ) LPQ F {!!} - uflp {L} LPQ F LF = record { limit = & < * ( UFLP.limit uflpp) , {!!} > ; P∋limit = {!!} ; is-limit = {!!} } where - LP : (L : HOD ) (LPQ : L ⊆ Power (ZFP P Q)) → HOD - LP L LPQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ1 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) - LPP : (L : HOD) (LPQ : L ⊆ Power (ZFP P Q)) → LP L LPQ ⊆ Power P - LPP L LPQ record { z = z ; az = az ; x=ψz = x=ψz } w xw = tp02 (subst (λ k → odef k w) - (subst₂ (λ j k → j ≡ k) refl *iso (cong (*) x=ψz) ) xw) where - tp02 : Replace' (* z) (λ z₁ xz → * (zπ1 (LPQ (subst (odef L) (sym &iso) az) (& z₁) (subst (λ k → odef k (& z₁)) (sym *iso) xz)))) ⊆ P - tp02 record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k ) (trans (sym &iso) (sym x=ψz1) ) - (zp1 (LPQ (subst (λ k → odef L k) (sym &iso) az) _ (tp03 az1 ))) where - tp03 : odef (* z) z1 → odef (* (& (* z))) (& (* z1)) - tp03 lt = subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) lt) - FP : Filter (LPP L LPQ) - FP = record { filter = LP (filter F) (λ x → LPQ (f⊆L F x )) ; f⊆L = tp04 ; filter1 = {!!} ; filter2 = {!!} } where - tp04 : LP (filter F) (λ x → LPQ (f⊆L F x )) ⊆ LP L LPQ - tp04 record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = f⊆L F az ; x=ψz = {!!} } - uflpp : UFLP {P} TP {LP L LPQ} (LPP L LPQ) FP {!!} - uflpp = FIP→UFLP TP (Compact→FIP TP CP) (LPP L LPQ) FP {!!} - LQ : HOD - LQ = Replace' L ( λ x lx → Replace' x ( λ z xz → * ( zπ2 (LPQ lx (& z) (subst (λ k → odef k (& z)) (sym *iso) xz )))) ) - LQQ : LQ ⊆ Power Q - LQQ = {!!} --- S ⊆ ℕ + uflp : (F : Filter {pbase TP TQ} LPQ) (LF : filter F ∋ ZFP P Q) (UF : ultra-filter F) + → UFLP (ProductTopology TP TQ) LPQ F LF UF + uflp F LF UF = record { limit = & < ? , {!!} > ; P∋limit = {!!} ; is-limit = {!!} }