Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 49:7c23969befc9
fix Select
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 May 2019 20:48:20 +0900 |
parents | 4fb2a239061d |
children | 7cb32d22528c |
files | ordinal-definable.agda |
diffstat | 1 files changed, 11 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat May 25 18:45:47 2019 +0900 +++ b/ordinal-definable.agda Sat May 25 20:48:20 2019 +0900 @@ -173,7 +173,7 @@ Replace : OD {n} → (OD {n} → OD {n} ) → OD {n} Replace X ψ = sup-od ψ Select : OD {n} → (OD {n} → Set n ) → OD {n} - Select X ψ = record { def = λ x → ψ ( ord→od x ) } + Select X ψ = record { def = λ x → ( ( def X x ) ∧ ψ ( ord→od x )) } _,_ : OD {n} → OD {n} → OD {n} x , y = record { def = λ z → ( (z ≡ od→ord x ) ∨ ( z ≡ od→ord y )) } Union : OD {n} → OD {n} @@ -228,13 +228,17 @@ minimul<x x not = lemma0 (min<x (minord x not)) where lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) lemma0 m<x = def-subst {n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl - regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ - (Select (minimul x not , x) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) + regularity : (x : OD) (not : ¬ (x == od∅)) → + (x ∋ minimul x not) ∧ (Select (minimul x not , x) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 ( regularity x non ) = minimul<x x non proj2 ( regularity x non ) = reg1 where - reg0 : { x₁ : Ordinal} → def (Select (minimul x non , x) (λ x₂ → (minimul x non ∋ x₂) ∧ (x ∋ x₂))) x₁ - → def od∅ x₁ - reg0 {x₁} t = {!!} + reg3 : {y : Ordinal} → ((y ≡ od→ord (ord→od (mino (minord x non)))) ∨ (y ≡ od→ord x) ) + ∧ ( def (ord→od (mino (ominimal (od→ord x) (∅5 (od→ord x) (λ eq → non (∅7 x eq)))))) (od→ord (ord→od y)) + ∧ def x (od→ord (ord→od y))) → Lift n ⊥ + reg3 = {!!} + reg0 : {y : Ordinal} → def (Select (minimul x non , x) + (λ z → (minimul x non ∋ z) ∧ (x ∋ z))) y → def od∅ y + reg0 {y} t = reg3 t reg1 : Select (minimul x non , x) (λ x₁ → (minimul x non ∋ x₁) ∧ (x ∋ x₁)) == od∅ - reg1 = record { eq→ = {!!} ; eq← = λ () } + reg1 = record { eq→ = reg0 ; eq← = λ () }