Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 50:7cb32d22528c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 May 2019 21:31:07 +0900 |
parents | 7c23969befc9 |
children | 83b13f1f4f42 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 4 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat May 25 20:48:20 2019 +0900 +++ b/ordinal-definable.agda Sat May 25 21:31:07 2019 +0900 @@ -232,10 +232,11 @@ (x ∋ minimul x not) ∧ (Select (minimul x not , x) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) proj1 ( regularity x non ) = minimul<x x non proj2 ( regularity x non ) = reg1 where - reg3 : {y : Ordinal} → ((y ≡ od→ord (ord→od (mino (minord x non)))) ∨ (y ≡ od→ord x) ) - ∧ ( def (ord→od (mino (ominimal (od→ord x) (∅5 (od→ord x) (λ eq → non (∅7 x eq)))))) (od→ord (ord→od y)) + reg3 : {y : Ordinal} → ((y ≡ od→ord + (ord→od (mino (minord x non)))) ∨ (y ≡ od→ord x) ) + ∧ ( def (ord→od (mino (minord x non))) (od→ord (ord→od y)) ∧ def x (od→ord (ord→od y))) → Lift n ⊥ - reg3 = {!!} + reg3 {y} = {!!} reg0 : {y : Ordinal} → def (Select (minimul x non , x) (λ z → (minimul x non ∋ z) ∧ (x ∋ z))) y → def od∅ y reg0 {y} t = reg3 t