Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1210:806109d79562
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Mar 2023 10:26:35 +0900 |
parents | 09e4b32ece2e |
children | f17d060e0bda |
files | src/Topology.agda src/Tychonoff.agda |
diffstat | 2 files changed, 34 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Fri Mar 03 21:31:12 2023 +0900 +++ b/src/Topology.agda Sat Mar 04 10:26:35 2023 +0900 @@ -42,7 +42,7 @@ OS⊆PL : OS ⊆ Power L o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) o∪ : { P : HOD } → P ⊆ OS → OS ∋ Union P - OS∋od∅ : OS ∋ od∅ + OS∋od∅ : OS ∋ od∅ -- OS ∋ Union od∅ --- we may add -- OS∋L : OS ∋ L -- closed Set @@ -114,6 +114,12 @@ cc05 : odef (* (& (L \ * o))) x cc05 = ccx (& (L \ * o)) (P\OS=CS top (subst (λ k → odef (OS top) k) (sym &iso) oo)) (subst (λ k → A ⊆ k) (sym *iso) A⊆L-o) +CS∋x→Clx=x : {L x : HOD} → (top : Topology L) → CS top ∋ x → Cl top x ≡ x +CS∋x→Clx=x {L} {x} top cx = ==→o≡ record { eq→ = cc10 ; eq← = cc11 } where + cc10 : {y : Ordinal} → odef L y ∧ ((c : Ordinal) → odef (CS top) c → x ⊆ * c → odef (* c) y) → odef x y + cc10 {y} ⟪ Ly , cc ⟫ = subst (λ k → odef k y) *iso ( cc (& x) cx (λ {z} xz → subst (λ k → odef k z) (sym *iso) xz ) ) + cc11 : {y : Ordinal} → odef x y → odef L y ∧ ((c : Ordinal) → odef (CS top) c → x ⊆ * c → odef (* c) y) + cc11 {y} xy = ⟪ cs⊆L top cx xy , (λ c oc x⊆c → x⊆c xy ) ⟫ -- Subbase P -- A set of countable intersection of P will be a base (x ix an element of the base)
--- a/src/Tychonoff.agda Fri Mar 03 21:31:12 2023 +0900 +++ b/src/Tychonoff.agda Sat Mar 04 10:26:35 2023 +0900 @@ -226,7 +226,6 @@ ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim (ultra-filter.proper UF (subst (λ k → odef (filter F) k) (trans (sym b) (sym ord-od∅)) F∋P) ) ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) - -- -- take closure of given filter elements -- @@ -278,14 +277,34 @@ -- -- Neigbor of limit ⊆ Filter -- - ufl03 : {f v : Ordinal } → odef (filter F) f → Neighbor TP limit v → ¬ ( * f ∩ * v ) =h= od∅ -- because limit is in CF - ufl03 {f} {v} ff nei fv=0 = ? - pp : {v x : Ordinal} → Neighbor TP limit v → odef (* v) x → Power P ∋ (* x) - pp {v} {x} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } vx z pz = ? + -- if odef (* X) x, Cl TP x contains limit (ufl02) + -- in (nei : Neighbor TP limit v) , there is an open Set u which contains the limit + -- F contains u or P \ u because F is ultra + -- if F ∋ u, then F ∋ v from u ⊆ v which is a propetery of Neighbor + -- if F ∋ P \ u, it is a closed set (Cl (P \ u) ≡ P \ u) and it does not contains the limit + -- this contradicts ufl02 + pp : {v : Ordinal} → (nei : Neighbor TP limit v ) → Power P ∋ (* (Neighbor.u nei)) + pp {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; u⊆v = u⊆v } z pz + = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) ou ) (subst (λ k → odef k z) *iso pz ) ufl00 : {v : Ordinal} → Neighbor TP limit v → * v ⊆ filter F - ufl00 {v} nei {x} fx with ultra-filter.ultra UF (pp nei fx) (NEG P (pp nei fx)) - ... | case1 fv = subst (λ k → odef (filter F) k) &iso fv - ... | case2 nfv = ? -- will contradicts ufl03 + ufl00 {v} nei {x} vx with ultra-filter.ultra UF (pp nei ) (NEG P (pp nei )) + ... | case1 fu = ? where -- Neighbor.u⊆v nei ? where + -- subst (λ k → odef (filter F) k) &iso ( filter1 F ? ? ? ) where + px : Power P ∋ * x + px z xz = Neighbor.v⊆P nei ? + ... | case2 nfu = ⊥-elim ( ¬P\u∋limit P\u∋limit ) where + u = * (Neighbor.u nei) + P\u : HOD + P\u = P \ u + P\u∋limit : odef P\u limit + P\u∋limit = subst (λ k → odef k limit) *iso ( ufl02 (subst (λ k → odef k (& P\u)) (sym *iso) ufl03 )) where + ufl04 : & P\u ≡ & (Cl TP (* (& P\u))) + ufl04 = cong (&) (sym (trans (cong (Cl TP) *iso) + (CS∋x→Clx=x TP (P\OS=CS TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou nei) ))))) + ufl03 : odef CF (& P\u ) + ufl03 = record { z = _ ; az = nfu ; x=ψz = ufl04 } + ¬P\u∋limit : ¬ odef P\u limit + ¬P\u∋limit ⟪ Pl , nul ⟫ = nul ( Neighbor.ux nei ) -- product topology of compact topology is compact