Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1185:807a55d55086
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Feb 2023 19:30:43 +0900 |
parents | 0b2d03711aff |
children | ffe5bc98f9d1 |
files | src/Topology.agda |
diffstat | 1 files changed, 34 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Feb 25 15:32:50 2023 +0800 +++ b/src/Topology.agda Sat Feb 25 19:30:43 2023 +0900 @@ -467,7 +467,7 @@ -- it means there is a limit has-intersection : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) → o∅ o< X → ¬ ( Intersection (* X) =h= od∅ ) - has-intersection {X} CX fip 0<X i=0 = ⊥-elim ( ¬x<0 ( eq→ i=0 ⟪ ? , fp05 ⟫ )) where + has-intersection {X} CX fip 0<X i=0 = ⊥-elim ( ¬x<0 {NC.x fp13} ( eq→ i=0 ⟪ fp06 , fp05 ⟫ )) where no-cover : ¬ ( (* (OX CX)) covers L ) no-cover cov = ⊥-elim ( o<¬≡ ? (fip ? ?) ) where fp01 : Ordinal @@ -476,24 +476,41 @@ fp02 = ? record NC : Set n where field - x y : Ordinal + x : Ordinal Lx : odef L x - Xy : odef (* X) y - yx : odef (* y) x - fp03 : NC - fp03 with ODC.p∨¬p O NC + yx : {y : Ordinal} (Xy : odef (* X) y) → odef (* y) x + fp13 : NC + fp13 with ODC.p∨¬p O NC ... | case1 nc = nc - ... | case2 ¬nc = ⊥-elim ( no-cover record { cover = λ Lx → ? ; P∋cover = ? ; isCover = ? } ) where - fp14 : {x : Ordinal} → odef L x → {y : Ordinal} → odef (* X) y → ¬ odef (* y) x - fp14 {x} Lx {y} Xy yx = ¬nc record { x = x ; Lx = Lx ; y = y ; Xy = Xy ; yx = yx } - fp06 : {x : Ordinal} → odef L x → HOD - fp06 {x} Lx = record { od = record { def = λ y → odef (* X) y → odef (L \ * y) x } ; odmax = ? ; <odmax = ? } - fp07 : {x : Ordinal} → (Lx : odef L x ) → ¬ ( fp06 Lx =h= od∅ ) - fp07 {x} Lx eq = ⊥-elim (¬x<0 {x} (eq→ eq fp08)) where - fp08 : {y : Ordinal} → odef (* X) y → odef (L \ * y) x - fp08 = ? - fp05 : {y : Ordinal } → odef (* X) y → odef ( * y) (NC.x fp03) - fp05 {y} Xy = ? + ... | case2 ¬nc = ⊥-elim ( no-cover record { cover = λ Lx → & (L \ coverf Lx) ; P∋cover = fp22 ; isCover = fp23 } ) where + fp14 : {x : Ordinal} → odef L x → ¬ ( {y : Ordinal} → odef (* X) y → odef (* y) x ) + fp14 {x} Lx yx = ¬nc record { x = x ; Lx = Lx ; yx = yx } + coverSet : {x : Ordinal} → odef L x → HOD + coverSet {x} Lx = record { od = record { def = λ y → odef (* X) y ∧ odef (L \ * y) x } ; odmax = ? ; <odmax = ? } + fp17 : {x : Ordinal} → (Lx : odef L x ) → ¬ ( coverSet Lx =h= od∅ ) + fp17 {x} Lx eq = ⊥-elim (¬nc record { x = x ; Lx = Lx ; yx = fp19 } ) where + fp19 : {y : Ordinal} → odef (* X) y → odef (* y) x + fp19 {y} Xy with ∨L\X {L} {* y} {x} Lx + ... | case1 yx = yx + ... | case2 lyx = ⊥-elim ( ¬x<0 {y} ( eq→ eq fp20 )) where + fp20 : odef (* X) y ∧ odef (L \ * y) x + fp20 = ⟪ Xy , lyx ⟫ + coverf : {x : Ordinal} → (Lx : odef L x ) → HOD + coverf Lx = ODC.minimal O (coverSet Lx) (fp17 Lx) + fp22 : {x : Ordinal} (lt : odef L x) → odef (* (OX CX)) (& (coverf lt)) + fp22 {x} Lx = subst ( λ k → odef k (& (coverf Lx))) (sym *iso) ( record { z = & (coverf Lx) ; az = fp25 ; x=ψz = ? } ) where + fp24 : & (coverf Lx) ≡ & (L \ * ? ) + fp24 = ? + fp25 : odef (* X) (& (coverf Lx)) + fp25 = proj1 ( ODC.x∋minimal O (coverSet Lx) (fp17 Lx) ) + -- with ( ODC.x∋minimal O (coverSet Lx) (fp17 Lx) ) + -- ... | t = ? + fp23 : {x : Ordinal} (lt : odef L x) → odef (* (& (coverf lt))) x + fp23 {x} Lx = ? + fp05 : {y : Ordinal } → (Xy : odef (* X) y ) → odef ( * y) (NC.x fp13 ) + fp05 {y} Xy = NC.yx fp13 Xy + fp06 : NC.x fp13 o< & (* X) + fp06 = ? limit : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) → Ordinal limit {X} CX fip with trio< X o∅