Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 961:811135ad1904
supf sp = sp ?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 04 Nov 2022 18:55:44 +0900 |
parents | b7370c39769e |
children | d594a8439174 |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 26 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 04 17:27:12 2022 +0900 +++ b/src/zorn.agda Fri Nov 04 18:55:44 2022 +0900 @@ -483,27 +483,6 @@ fsp≤sp : f sp <= sp fsp≤sp = subst (λ k → f k <= sp ) (sym (HasPrev.x=fy hp)) im00 - IsMinSUP< : ( {a : Ordinal } → a << f a ) - → {b x : Ordinal } → {ab : odef A b} → x o≤ z → b o< x - → IsMinSUP A (UnionCF A f mf ay supf x) f ab → IsMinSUP A (UnionCF A f mf ay supf b) f ab - IsMinSUP< <-mono-f {b} {x} {ab} x≤z b<x record { x≤sup = x≤sup ; minsup = minsup ; not-hp = nhp } - = record { x≤sup = m02 ; minsup = m07 ; not-hp = IsMinSUP→NotHasPrev ab m02 <-mono-f } where - m02 : {z : Ordinal} → odef (UnionCF A f mf ay supf b) z → (z ≡ b) ∨ (z << b) - m02 {z} uz = x≤sup (chain-mono f mf ay supf supf-mono (o<→≤ b<x) uz) - m10 : {s : Ordinal } → (odef A s ) - → ( {w : Ordinal} → odef (UnionCF A f mf ay supf b) w → (w ≡ s) ∨ (w << s) ) - → {w : Ordinal} → odef (UnionCF A f mf ay supf x) w → (w ≡ s) ∨ (w << s) - m10 {s} as b-is-sup ⟪ aa , ch-init fc ⟫ = ? - m10 {s} as b-is-sup ⟪ aa , ch-is-sup u {w} u<x is-sup-z fc ⟫ = m01 where - m01 : w <= s - m01 with trio< (supf u) (supf b) - ... | tri< a ¬b ¬c = b-is-sup ⟪ aa , ch-is-sup u {w} a is-sup-z fc ⟫ - ... | tri≈ ¬a b ¬c = ? - ... | tri> ¬a ¬b c = ? - m07 : {s : Ordinal} → odef A s → ({z : Ordinal} → - odef (UnionCF A f mf ay supf b) z → (z ≡ s) ∨ (z << s)) → b o≤ s - m07 {s} as b-is-sup = minsup as (m10 as b-is-sup ) - record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (zc : ZChain A f mf ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where supf = ZChain.supf zc @@ -1399,16 +1378,31 @@ z12 : odef chain sp z12 with o≡? (& s) sp ... | yes eq = subst (λ k → odef chain k) eq ( ZChain.chain∋init zc ) - ... | no ne = ZChain1.is-max (SZ1 f mf as0 zc (& A)) {& s} {sp} ( ZChain.chain∋init zc ) ssp<as asp - (case2 z19 ) z13 where + ... | no ne = ZChain1.is-max (SZ1 f mf as0 zc (& A)) {& s} {sp} ( ZChain.chain∋init zc ) ssp<as asp (case2 z19 ) z13 where z13 : * (& s) < * sp z13 with MinSUP.x≤sup sp1 ( ZChain.chain∋init zc ) ... | case1 eq = ⊥-elim ( ne eq ) - ... | case2 lt = lt -- subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt + ... | case2 lt = lt z19 : IsMinSUP A (UnionCF A f mf as0 (ZChain.supf zc) sp) f asp - z19 = record { x≤sup = z20 ; minsup = ? ; not-hp = ZChain.IsMinSUP→NotHasPrev zc ? z20 ? } where + z19 = record { x≤sup = z20 ; minsup = z21 ; not-hp = ZChain.IsMinSUP→NotHasPrev zc ? z20 ? } where + z23 : {z : Ordinal } → odef chain z → odef (UnionCF A f mf as0 (ZChain.supf zc) sp) z + z23 {z} ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ + z23 {z} ⟪ au , ch-is-sup u u<x is-sup fc ⟫ = ⟪ au , ch-is-sup u z24 is-sup fc ⟫ where + z26 : supf sp <= sp + z26 = MinSUP.x≤sup sp1 ⟪ ? + , ch-is-sup sp ? ? (init (ZChain.asupf zc) ? ) ⟫ + z25 : u <= sp + z25 = MinSUP.x≤sup sp1 ⟪ subst (λ k → odef A k) (ChainP.supu=u is-sup) (ZChain.asupf zc) + , ch-is-sup u u<x is-sup (init (ZChain.asupf zc) (ChainP.supu=u is-sup)) ⟫ + z24 : supf u o< supf sp + z24 = ? -- with ZChain.supf-<= zc z25 + z21 : {sup1 : Ordinal} → odef A sup1 + → ({z : Ordinal} → odef (UnionCF A f mf as0 (ZChain.supf zc) sp) z → (z ≡ sup1) ∨ (z << sup1)) + → sp o≤ sup1 + z21 {s} as s-sup = MinSUP.minsup sp1 as ( λ uz → s-sup (z23 uz) ) z20 : {y : Ordinal} → odef (UnionCF A f mf as0 (ZChain.supf zc) sp) y → (y ≡ sp) ∨ (y << sp) - z20 {y} zy with MinSUP.x≤sup sp1 (subst (λ k → odef chain k ) (sym &iso) (chain-mono f mf as0 supf (ZChain.supf-mono zc) (o<→≤ z22) zy )) + z20 {y} zy with MinSUP.x≤sup sp1 + (subst (λ k → odef chain k ) (sym &iso) (chain-mono f mf as0 supf (ZChain.supf-mono zc) (o<→≤ z22) zy )) ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso y=p ) ... | case2 y<p = case2 (subst (λ k → * k < _ ) &iso y<p ) z14 : f sp ≡ sp