Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 448:81691a6b352b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 13 Mar 2022 19:03:33 +0900 |
parents | 364d738f871d |
children | be685f338fdc |
files | src/OD.agda src/generic-filter.agda src/nat.agda |
diffstat | 3 files changed, 33 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Sun Mar 13 14:44:24 2022 +0900 +++ b/src/OD.agda Sun Mar 13 19:03:33 2022 +0900 @@ -206,6 +206,9 @@ =od∅→≡o∅ : {x : HOD} → od x == od od∅ → & x ≡ o∅ =od∅→≡o∅ {x} eq = trans (cong (λ k → & k ) (==→o≡ {x} {od∅} eq)) ord-od∅ +≡od∅→=od∅ : {x : HOD} → x ≡ od∅ → od x == od od∅ +≡od∅→=od∅ {x} eq = ≡o∅→=od∅ (subst (λ k → & x ≡ k ) ord-od∅ ( cong & eq ) ) + ∅0 : record { def = λ x → Lift n ⊥ } == od od∅ eq→ ∅0 {w} (lift ()) eq← ∅0 {w} lt = lift (¬x<0 lt)
--- a/src/generic-filter.agda Sun Mar 13 14:44:24 2022 +0900 +++ b/src/generic-filter.agda Sun Mar 13 19:03:33 2022 +0900 @@ -149,7 +149,7 @@ P-GenericFilter : (P p0 : HOD ) → Power P ∋ p0 → (C : CountableModel P) → GenericFilter P P-GenericFilter P p0 Pp0 C = record { genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } - ; generic = λ D → {!!} + ; generic = fdense } where PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i P C x ⊆ Power P PGHOD∈PL i x = record { incl = λ {x} p → proj1 p } @@ -164,11 +164,34 @@ f2 {p} {q} PD∋p PD∋q with <-cmp (gr PD∋p) (gr PD∋q) ... | tri< a ¬b ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt); x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y - f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y ?) ⟫ + f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y (f5 lt)) ⟫ where + f5 : odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (* (find-p P C (gr PD∋q) (& p0))) y + f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋p} {gr PD∋q} (<to≤ a)) + (subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) (sym &iso) lt) ) +-- subst (λ k → odef k y) *iso (pn<gr PD∋q y (subst (λ k → odef _ k ) &iso (incl (p-monotonic _ _ C a ) (subst (λ k → odef _ k) &iso lt) ))) ⟫ ... | tri≈ ¬a refl ¬c = record { gr = gr PD∋p ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f4 y lt); x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where f4 : (y : Ordinal) → odef (* (find-p P C (gr PD∋p) (& p0))) y → odef (p ∩ q) y f4 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y lt) , subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ - ... | tri> ¬a ¬b c = record { gr = gr PD∋q ; pn<gr = {!!} ; x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } + ... | tri> ¬a ¬b c = record { gr = gr PD∋q ; pn<gr = λ y lt → subst (λ k → odef k y ) (sym *iso) (f3 y lt) ; x∈PP = ODC.power-∩ O (x∈PP PD∋p) (x∈PP PD∋q) } where + f3 : (y : Ordinal) → odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (p ∩ q) y + f3 y lt = ⟪ subst (λ k → odef k y) *iso (pn<gr PD∋p y (f5 lt)) , subst (λ k → odef k y) *iso (pn<gr PD∋q y lt) ⟫ where + f5 : odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (* (find-p P C (gr PD∋p) (& p0))) y + f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋q} {gr PD∋p} (<to≤ c)) + (subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) (sym &iso) lt) ) + fdense : (D : Dense P ) → ¬ (filter.Dense.dense D ∩ PDHOD P p0 C) ≡ od∅ + fdense D eq0 = ⊥-elim ( ∅< {Dense.dense D ∩ PDHOD P p0 C} fd01 (≡od∅→=od∅ eq0 )) where + open Dense + fd : HOD + fd = dense-f D p0 + PP∋D : dense D ⊆ Power P + PP∋D = d⊆P D + fd02 : dense D ∋ dense-f D p0 + fd02 = dense-d D (ODC.power→⊆ O _ _ Pp0 ) + fd03 : PDHOD P p0 C ∋ dense-f D p0 + fd03 = f1 {p0} {dense-f D p0} {!!} {!!} ( dense-p D {!!} ) + fd01 : (dense D ∩ PDHOD P p0 C) ∋ fd + fd01 = ⟪ fd02 , fd03 ⟫ +
--- a/src/nat.agda Sun Mar 13 14:44:24 2022 +0900 +++ b/src/nat.agda Sun Mar 13 19:03:33 2022 +0900 @@ -26,6 +26,10 @@ a<sa {Zero} = s≤s z≤n a<sa {Suc la} = s≤s a<sa +<to≤ : {x y : Nat } → x < y → x ≤ y +<to≤ {Zero} {Suc y} (s≤s z≤n) = z≤n +<to≤ {Suc x} {Suc y} (s≤s lt) = s≤s (<to≤ {x} {y} lt) + =→¬< : {x : Nat } → ¬ ( x < x ) =→¬< {Zero} () =→¬< {Suc x} (s≤s lt) = =→¬< lt