Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 684:822fce8af579
no transfinite on data Chain trichotomos
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 Jul 2022 08:10:34 +0900 |
parents | 6814fc4e7998 |
children | 6826883cfbf8 |
files | src/zorn.agda |
diffstat | 1 files changed, 20 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Jul 10 06:34:54 2022 +0900 +++ b/src/zorn.agda Sun Jul 10 08:10:34 2022 +0900 @@ -255,7 +255,7 @@ data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) : Ordinal → Ordinal → Set n where ch-init : (x z : Ordinal) → x ≡ o∅ → FClosure A f y z → Chain A f mf ay x z - ch-is-sup : {x z : Ordinal } ( ax : odef A x ) + ch-is-sup : {x z : Ordinal } (0<x : o∅ o< x) ( ax : odef A x ) → ( is-sup : (x1 w : Ordinal) → x1 o< x → Chain A f mf ay x1 w → w << x ) → ( fc : FClosure A f x z ) → Chain A f mf ay x z record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where @@ -291,6 +291,25 @@ SupCond : ( A B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → Set (Level.suc n) SupCond A B _ _ = SUP A B +-- data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) : Ordinal → Ordinal → Set n where +-- +-- data Chain is total + +chain-total : (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) + {s s1 a b : Ordinal } ( ca : Chain A f mf ay s a ) ( cb : Chain A f mf ay s1 b ) → Tri (* a < * b) (* a ≡ * b) (* b < * a ) +chain-total A f mf {y} ay {s} {s1} {a} {b} ca cb = TransFinite + {λ x → {s1 a b : Ordinal } ( ca : Chain A f mf ay x a ) ( cb : Chain A f mf ay s1 b ) → Tri (* a < * b) (* a ≡ * b) (* b < * a )} ct-ind s ca cb where + ct-ind : (x : Ordinal) → + ((y₁ : Ordinal) → y₁ o< x → {s1 a b : Ordinal} → Chain A f mf ay y₁ a → Chain A f mf ay s1 b → Tri (* a < * b) (* a ≡ * b) (* b < * a)) + → {s1 a b : Ordinal} → Chain A f mf ay x a → Chain A f mf ay s1 b → Tri (* a < * b) (* a ≡ * b) (* b < * a) + ct-ind x prev {s1} {a} {b} (ch-init s a x=0 fca) (ch-init s1 b x=0' fcb) = fcn-cmp y f mf fca fcb + ct-ind x prev {s1} {a} {b} (ch-init s a x=0 fca) (ch-is-sup 0<x as supb fcb) = ? + ct-ind x prev {s1} {a} {b} (ch-is-sup 0<x as supa fca) (ch-init s1 b x=0' fcb) = ? + ct-ind x prev {s1} {a} {b} (ch-is-sup 0<x as supa fca) (ch-is-sup 0<x' as' supb fcb) with trio< x s1 + ... | tri< a₁ ¬b ¬c = ? + ... | tri≈ ¬a refl ¬c = fcn-cmp s1 f mf fca fcb + ... | tri> ¬a ¬b c = ? + Zorn-lemma : { A : HOD } → o∅ o< & A → ( ( B : HOD) → (B⊆A : B ⊆' A) → IsTotalOrderSet B → SUP A B ) -- SUP condition