Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 644:83f93d35b09a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Jun 2022 23:41:10 +0900 |
parents | a7e538a7c87f |
children | 2648a273647e |
files | src/zorn.agda |
diffstat | 1 files changed, 7 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Jun 26 22:27:17 2022 +0900 +++ b/src/zorn.agda Sun Jun 26 23:41:10 2022 +0900 @@ -585,14 +585,6 @@ ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c = ⊥-elim ( osuc-< w≤x c ) -- o<> c ( ord≤< w≤x )) -- z≡w x o< w ... | tri> ¬a ¬b c | t = ⊥-elim ( osuc-< w≤x (ord≤< c z≤w ) ) -- x o< z → x o< w - SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (& A) - SZ f mf {y} ay = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) - - postulate - TFcomm : { ψ : Ordinal → Set (Level.suc n) } - → (ind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x ) - → ∀ (x : Ordinal) → ind x (λ y _ → TransFinite ind y ) ≡ TransFinite ind x - record ZChain1 ( f : Ordinal → Ordinal ) ( y z : Ordinal ) : Set (Level.suc n) where inductive field @@ -603,12 +595,17 @@ SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) → (z : Ordinal) → ZChain1 f y z SZ1 f mf {y} ay z = TransFinite {λ w → ZChain1 f y w } indp z where + open ZChain + open ZChain1 indp : (x : Ordinal) → ((y₁ : Ordinal) → y₁ o< x → ZChain1 f y y₁) → ZChain1 f y x indp x prev with Oprev-p x ... | yes op = sz02 where - sz02 : ZChain1 f y ? + px = Oprev.oprev op + zc1 : ZChain1 f y (Oprev.oprev op) + zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) + sz02 : ZChain1 f y x sz02 with ODC.∋-p O A (* x) - ... | no noax = {!!} + ... | no noax = record { zc = ? ; chain-mono = ? ; f-total = ? } ... | yes noax = {!!} ... | no ¬ox with trio< x y ... | tri< a ¬b ¬c = {!!} @@ -631,12 +628,8 @@ nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ - -- zorn04 : ZChain A (& s) (cf nmx) (& A) - -- zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) zc0 : ZChain1 (cf nmx) (& s) (osuc (& A)) zc0 = SZ1 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as) (osuc (& A)) - -- zc1 : IsTotalOrderSet ( ZChain.chain (ZChain1.zc zc0 <-osuc ) ) - -- zc1 = ZChain1.f-total zc0 <-osuc -- usage (see filter.agda ) --