Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 636:844eb13a5a39
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Jun 2022 11:03:20 +0900 |
parents | 761bf71e5594 |
children | c17d46ecb051 |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Jun 21 10:07:58 2022 +0900 +++ b/src/zorn.agda Tue Jun 21 11:03:20 2022 +0900 @@ -667,10 +667,12 @@ ... | case1 z=y = subst (λ k → x o< k ) z=y x<z ... | case2 z<y = ordtrans x<z z<y u-mono : {z : Ordinal} → z o≤ x → supf0 z ⊆' supf0 x - u-mono {z} z≤x {i} with trio< z x - ... | tri< a ¬b ¬c = {!!} -- λ lt → lt -- record { u = z ; u<x = a ; chain∋z = lt } - ... | tri≈ ¬a b ¬c = {!!} -- λ lt → lt - ... | tri> ¬a ¬b c = {!!} -- λ lt → lt + u-mono {z} z≤x {i} with trio< z x | trio< x x + ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = λ lt → {!!} + ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = λ lt → record { u = {!!} ; u<x = {!!} ; chain∋z = lt } + ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c = λ lt → {!!} + ... | tri≈ ¬a b ¬c | s = {!!} -- λ lt → lt + ... | tri> ¬a ¬b c | s = {!!} -- λ lt → lt SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ya : odef A y) → ZChain A y f (& A) SZ f mf {y} ay = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) (& A) @@ -691,20 +693,11 @@ SZ1 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} → (ay : odef A y) → (z : Ordinal) → ZChain1 f mf ay z SZ1 f mf {y} ay z = record { zc = TransFinite {λ z → ZChain A y f z } (ind f mf ay ) z - ; chain-mono = {!!} ; f-total = {!!} } where -- TransFinite {λ w → ZChain1 f mf ay w} indp z where - indp : (x : Ordinal) → - ((y₁ : Ordinal) → y₁ o< x → ZChain1 f mf ay y₁) → - ZChain1 f mf ay x - indp x prev with Oprev-p x - ... | yes op = sz02 where - sz02 : ZChain1 f mf ay x - sz02 with ODC.∋-p O A (* x) - ... | no noax = {!!} - ... | yes noax = {!!} - ... | no ¬ox with trio< x y - ... | tri< a ¬b ¬c = {!!} - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b y<x = {!!} + ; chain-mono = mono sf ; f-total = {!!} } where -- TransFinite {λ w → ZChain1 f mf ay w} indp z where + sf : Ordinal → HOD + sf x = ZChain.supf (TransFinite (ind f mf ay) z) x + mono : {x : Ordinal} {w : Ordinal} (sf : Ordinal → HOD) → x o≤ w → w o≤ z → sf x ⊆' sf w + mono {a} {b} sf a≤b b≤z = TransFinite0 {λ b → a o≤ b → b o≤ z → sf a ⊆' sf b } {!!} b a≤b b≤z zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM