Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1415:85842347e270
work around on strict positive on gfImage
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Jun 2023 19:03:50 +0900 |
parents | 180caeb6927b |
children | 4d9b60eed372 |
files | src/cardinal.agda |
diffstat | 1 files changed, 27 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Fri Jun 30 18:10:40 2023 +0900 +++ b/src/cardinal.agda Fri Jun 30 19:03:50 2023 +0900 @@ -124,12 +124,13 @@ Bernstein : {a b : Ordinal } → Injection a b → Injection b a → OrdBijection a b Bernstein {a} {b} (f @ record { i→ = fab ; iB = b∋fab ; inject = fab-inject }) ( g @ record { i→ = fba ; iB = a∋fba ; inject = fba-inject }) = record { - fun← = λ x lt → ? - ; fun→ = λ x lt → ? + fun← = λ x lt → h lt (cc0 x) + ; fun→ = λ x lt → h⁻¹ lt (cc1 x) ; funB = ? ; funA = ? - ; fiso← = ? - ; fiso→ = ? } + ; fiso← = λ x lt → be72 x lt (cc1 x) + ; fiso→ = λ x lt → be73 x lt (cc0 x) + } where gf : Injection a a gf = record { i→ = λ x ax → fba (fab x ax) (b∋fab x ax) ; iB = λ x ax → a∋fba _ (b∋fab x ax) @@ -296,6 +297,18 @@ ... | a-g ax ¬ib = sym x=fy ... | next-gf t ix = sym x=fy + CC0 : (x : Ordinal) → Set n + CC0 x = gfImage x ∨ (¬ gfImage x) + + CC1 : (x : Ordinal) → Set n + CC1 x = odef (Image (& UC) (Injection-⊆ UC⊆a f)) x ∨ (¬ odef (Image (& UC) (Injection-⊆ UC⊆a f)) x) + + cc0 : (x : Ordinal) → CC0 x + cc0 x = ODC.p∨¬p O (gfImage x) + + cc1 : (x : Ordinal) → CC1 x + cc1 x = ODC.p∨¬p O (odef (Image (& UC) (Injection-⊆ UC⊆a f)) x) + h : {x : Ordinal } → (ax : odef (* a) x) → gfImage x ∨ (¬ gfImage x) → Ordinal h {x} ax (case1 cn) = fU x (subst (λ k → odef k x ) (sym *iso) cn ) h {x} ax (case2 ncn) = i→ be10 x (subst (λ k → odef k x ) (sym *iso) ⟪ ax , ncn ⟫ ) @@ -335,10 +348,16 @@ be70-1 : (x : Ordinal) (lt : odef (* a) x) → (or : gfImage x ∨ (¬ gfImage x )) → odef ( Image (& UC) (Injection-⊆ UC⊆a f)) (h lt or ) be70-1 = ? - be72 : (x : Ordinal) (bx : odef (* b) x) → h (be71 x bx ?) ? ≡ x - be72 x bx with ODC.p∨¬p O (odef ( Image (& UC) (Injection-⊆ UC⊆a f)) x) - be72 x bx | case1 record { y = y ; ay = ay ; x=fy = x=fy } = ? - be72 x bx | case2 nimg = ? + cc10 : {x : Ordinal} → (bx : odef (* b) x) → (cc1 : CC1 x) → CC0 (h⁻¹ bx cc1 ) + cc10 = ? + + be72 : (x : Ordinal) (bx : odef (* b) x) → (cc1 : CC1 x) → h (be71 x bx cc1 ) (cc10 bx cc1) ≡ x + be72 x bx (case1 x₁) = trans ? (UC-iso1 x (subst (λ k → odef k x) (sym *iso) x₁)) + be72 x bx (case2 x₁) = trans ? (a-UC-iso1 x ? ) + + be73 : (x : Ordinal) (ax : odef (* a) x) → (cc0 : CC0 x ) → h⁻¹ ? ? ≡ x + be73 x bx (case1 x₁) = trans ? (UC-iso0 x (subst (λ k → odef k x) (sym *iso) ? )) + be73 x bx (case2 x₁) = trans ? (a-UC-iso0 x ? ) _c<_ : ( A B : HOD ) → Set n