Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 405:85b328d3b96b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Jul 2020 14:15:33 +0900 |
parents | f7b844af9a50 |
children | bf409d31184c |
files | OD.agda |
diffstat | 1 files changed, 13 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jul 28 13:34:25 2020 +0900 +++ b/OD.agda Tue Jul 28 14:15:33 2020 +0900 @@ -497,6 +497,17 @@ open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n m : Level} → HE.Extensionality n m +ω-prev-eq1 : {x y : Ordinal} → od→ord (Union (ord→od y , (ord→od y , ord→od y))) ≡ od→ord (Union (ord→od x , (ord→od x , ord→od x))) → ¬ (x o< y) +ω-prev-eq1 {x} {y} eq not with eq→ (ord→== eq) {od→ord (ord→od y , ord→od y)} (λ not2 → not2 (od→ord (ord→od y , ord→od y)) + record { proj1 = case2 refl ; proj2 = subst (λ k → odef k (od→ord (ord→od y))) {!!} (case1 refl) } ) +... | t = {!!} + +ω-prev-eq : {x y : Ordinal} → od→ord (Union (ord→od y , (ord→od y , ord→od y))) ≡ od→ord (Union (ord→od x , (ord→od x , ord→od x))) → x ≡ y +ω-prev-eq {x} {y} eq with trio< x y +ω-prev-eq {x} {y} eq | tri< a ¬b ¬c = {!!} +ω-prev-eq {x} {y} eq | tri≈ ¬a b ¬c = b +ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = {!!} + nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i nat→ω-iso {i} = ε-induction1 {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where ind : {x : HOD} → ({y : HOD} → x ∋ y → (lt : infinite ∋ y) → nat→ω (ω→nat y lt) ≡ y) → @@ -519,14 +530,12 @@ (od→ord (ord→od x₁ , ord→od x₁)) record {proj1 = pair2 ; proj2 = subst (λ k → odef k (od→ord (ord→od x₁))) (sym oiso) pair1 } ) lemma1 : infinite ∋ ord→od x₁ lemma1 = subst (λ k → odef infinite k) (sym diso) ltd - lemma5 : {x y : Ordinal} → od→ord (Union (ord→od y , (ord→od y , ord→od y))) ≡ od→ord (Union (ord→od x , (ord→od x , ord→od x))) → x ≡ y - lemma5 {x} {y} eq = {!!} lemma3 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ltd ≅ ltd1 lemma3 iφ iφ refl = HE.refl lemma3 iφ (isuc ltd1) eq = {!!} lemma3 (isuc ltd) iφ eq = {!!} - lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (lemma5 (sym eq)) - ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (lemma5 eq)) t + lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (ω-prev-eq (sym eq)) + ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (ω-prev-eq eq)) t lemma2 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ω→nato ltd ≡ ω→nato ltd1 lemma2 {x} {y} ltd ltd1 eq = lemma6 eq (lemma3 {x} {y} ltd ltd1 eq) where lemma6 : {x y : Ordinal} → {ltd : infinite-d x } {ltd1 : infinite-d y } → y ≡ x → ltd ≅ ltd1 → ω→nato ltd ≡ ω→nato ltd1