Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1394:873924d06ff7
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 27 Jun 2023 09:20:55 +0900 |
parents | c67ecdf89e77 |
children | e39c2bffb86e |
files | src/cardinal.agda |
diffstat | 1 files changed, 14 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Tue Jun 27 08:48:41 2023 +0900 +++ b/src/cardinal.agda Tue Jun 27 09:20:55 2023 +0900 @@ -170,12 +170,25 @@ b-UC⊆b : * (& b-UC) ⊆ * b b-UC⊆b {x} lt = proj1 ( subst (λ k → odef k x) *iso lt ) + open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) + + fab-refl : {x : Ordinal } → {ax ax1 : odef (* a) x} → fab x ax ≡ fab x ax1 + fab-refl {x} {ax} {ax1} = cong (λ k → fab x k) ( HE.≅-to-≡ ( ∋-irr {* a} ax ax1 )) + + fba-refl : {x : Ordinal } → {bx bx1 : odef (* b) x} → fba x bx ≡ fba x bx1 + fba-refl {x} {bx} {bx1} = cong (λ k → fba x k) ( HE.≅-to-≡ ( ∋-irr {* b} bx bx1 )) + be10 : Injection (& b-UC) (& (Image (& b-UC) {a} (Injection-⊆ b-UC⊆b g) )) - be10 = record { i→ = be12 ; iB = ? ; inject = ? } where + be10 = record { i→ = be12 ; iB = be13 ; inject = ? } where be12 : (x : Ordinal) → odef (* (& b-UC)) x → Ordinal be12 x lt = i→ g x (proj1 be02) where be02 : odef (* b) x ∧ ( ¬ CN x ) be02 = subst (λ k → odef k x) *iso lt + be13 : (x : Ordinal) (lt : odef (* (& b-UC)) x) → odef (* (& (Image (& b-UC) (Injection-⊆ b-UC⊆b g)))) (be12 x lt) + be13 x lt = subst (λ k → odef k (be12 x lt)) (sym *iso) record { y = x ; ay = subst (λ k → odef k x) (sym *iso) be02 ; x=fy = fba-refl } where + be02 : odef (* b) x ∧ ( ¬ CN x ) + be02 = subst (λ k → odef k x) *iso lt + be11 : Injection (& (Image (& b-UC) {a} (Injection-⊆ b-UC⊆b g) )) (& b-UC) be11 = record { i→ = be13 ; iB = ? ; inject = ? } where @@ -185,11 +198,6 @@ be02 : odef (* b) y ∧ ( ¬ CN y ) be02 = subst (λ k → odef k y) *iso ay - open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) - - fab-refl : {x : Ordinal } → {ax ax1 : odef (* a) x} → fab x ax ≡ fab x ax1 - fab-refl {x} {ax} {ax1} = cong (λ k → fab x k) ( HE.≅-to-≡ ( ∋-irr {* a} ax ax1 )) - fUC = & (Image (& UC) {b} (Injection-⊆ UC⊆a f) ) -- C n → f (C n) fU : Injection (& UC) (& (Image (& UC) {b} (Injection-⊆ UC⊆a f) ))