Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 436:87b5303ceeb5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 22 Feb 2022 22:08:44 +0900 |
parents | b18ca68d115a |
children | 2b5d2072e1af |
files | src/generic-filter.agda |
diffstat | 1 files changed, 61 insertions(+), 48 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Sun Feb 20 22:39:17 2022 +0900 +++ b/src/generic-filter.agda Tue Feb 22 22:08:44 2022 +0900 @@ -54,7 +54,7 @@ import OPair open OPair O -record CountableModel : Set (suc (suc n)) where +record CountableModel (P : HOD) : Set (suc (suc n)) where field ctl-M : Ordinal ctl→ : Nat → Ordinal @@ -62,6 +62,9 @@ is-Model : (x : Nat) → ctl→ x o< ctl-M ctl-iso→ : { x : Ordinal } → (lt : x o< ctl-M) → ctl→ (ctl← x lt ) ≡ x ctl-iso← : { x : Nat } → ctl← (ctl→ x ) (is-Model x) ≡ x + ctl-P⊆M : Power P ⊆ * ctl-M + +-- we expect ¬ G ∈ * ctl-M, so ¬ P ∈ * ctl-M open CountableModel @@ -69,13 +72,13 @@ -- a(n) ∈ M -- ∃ q ∈ Power P → q ∈ a(n) ∧ p(n) ⊆ q -- -PGHOD : (i : Nat) → (C : CountableModel) → (P : HOD) → (p : Ordinal) → HOD -PGHOD i C P p = record { od = record { def = λ x → +PGHOD : (i : Nat) (P : HOD) (C : CountableModel P) → (p : Ordinal) → HOD +PGHOD i P C p = record { od = record { def = λ x → odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* p) y → odef (* x) y ) } ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) (proj1 lt) } --- --- p(n+1) = if (f n) then qn otherwise p(n) +-- p(n+1) = if (f n) != ∅ then (f n) otherwise p(n) -- next-p : (p : Ordinal) → (f : HOD → HOD) → Ordinal next-p p f with is-o∅ ( & (f (* p))) @@ -85,17 +88,17 @@ --- -- search on p(n) -- -find-p : (C : CountableModel) (P : HOD ) (i : Nat) → (x : Ordinal) → Ordinal -find-p C P Zero x = x -find-p C P (Suc i) x = find-p C P i ( next-p x (λ p → PGHOD i C P (& p) )) +find-p : (P : HOD ) (C : CountableModel P) (i : Nat) → (x : Ordinal) → Ordinal +find-p P C Zero x = x +find-p P C (Suc i) x = find-p P C i ( next-p x (λ p → PGHOD i P C (& p) )) --- -- G = { r ∈ Power P | ∃ n → r ⊆ p(n) } -- -record PDN (C : CountableModel) (P : HOD ) (x : Ordinal) : Set n where +record PDN (P p : HOD ) (C : CountableModel P) (x : Ordinal) : Set n where field gr : Nat - pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p C P gr o∅)) y + pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p P C gr (& p))) y x∈PP : odef (Power P) x open PDN @@ -103,8 +106,8 @@ --- -- G as a HOD -- -PDHOD : (C : CountableModel) → (P : HOD ) → HOD -PDHOD C P = record { od = record { def = λ x → PDN C P x } +PDHOD : (P p : HOD ) (C : CountableModel P ) → HOD +PDHOD P p C = record { od = record { def = λ x → PDN P p C x } ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.x∈PP lt) } open PDN @@ -125,53 +128,47 @@ open _⊆_ -P-GenericFilter : (C : CountableModel) → (P : HOD ) → GenericFilter P -P-GenericFilter C P = record { - genf = record { filter = PDHOD C P ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } +P-GenericFilter : (P p0 : HOD ) → (C : CountableModel P) → GenericFilter P +P-GenericFilter P p0 C = record { + genf = record { filter = PDHOD P p0 C ; f⊆PL = f⊆PL ; filter1 = f1 ; filter2 = f2 } ; generic = λ D → {!!} } where - PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i C P x ⊆ Power P + PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i P C x ⊆ Power P PGHOD∈PL i x = record { incl = λ {x} p → proj1 p } - find-p-⊆P : (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef (* (find-p C P i x)) y → odef P y + find-p-⊆P : (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef (* (find-p P C i x)) y → odef P y find-p-⊆P Zero x y Px Py = subst (λ k → odef P k ) &iso ( incl (ODC.power→⊆ O P (* x) (d→∋ (Power P) Px)) (x<y→∋ Py)) - find-p-⊆P (Suc i) x y Px Py with is-o∅ ( & (PGHOD i C P (& (* x)))) + find-p-⊆P (Suc i) x y Px Py with is-o∅ ( & (PGHOD i P C (& (* x)))) ... | yes y1 = find-p-⊆P i x y Px Py ... | no not = find-p-⊆P i (& fmin) y pg-01 Py where fmin : HOD - fmin = ODC.minimal O (PGHOD i C P (& (* x))) (λ eq → not (=od∅→≡o∅ eq)) - fmin∈PGHOD : PGHOD i C P (& (* x)) ∋ fmin - fmin∈PGHOD = ODC.x∋minimal O (PGHOD i C P (& (* x))) (λ eq → not (=od∅→≡o∅ eq)) + fmin = ODC.minimal O (PGHOD i P C (& (* x))) (λ eq → not (=od∅→≡o∅ eq)) + fmin∈PGHOD : PGHOD i P C (& (* x)) ∋ fmin + fmin∈PGHOD = ODC.x∋minimal O (PGHOD i P C (& (* x))) (λ eq → not (=od∅→≡o∅ eq)) pg-01 : Power P ∋ fmin - pg-01 = incl (PGHOD∈PL i x ) (subst (λ k → PGHOD i C P k ∋ fmin ) &iso fmin∈PGHOD ) - f⊆PL : PDHOD C P ⊆ Power P + pg-01 = incl (PGHOD∈PL i x ) (subst (λ k → PGHOD i P C k ∋ fmin ) &iso fmin∈PGHOD ) + f⊆PL : PDHOD P p0 C ⊆ Power P f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → - find-p-⊆P (gr lt) o∅ (& y) P∅ (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } - f1 : {p q : HOD} → q ⊆ P → PDHOD C P ∋ p → p ⊆ q → PDHOD C P ∋ q - f1 {p} {q} q⊆P PD∋p p⊆q = f01 (& p) (& q) (⊆→o≤ f02) PD∋p (⊆→o≤ f03) where + find-p-⊆P (gr lt) {!!} (& y) {!!} (pn<gr lt (& y) (subst (λ k → odef k (& y)) (sym *iso) y<x))) } + f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q + f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = {!!} ; pn<gr = {!!} ; x∈PP = {!!} } where + -- ¬ p ⊆ a n ⊆ p m + -- a(n) ∈ M, ¬ (∃ q ∈ a(n) ∧ p(n) ⊆ q ) ∨ (∃ q ∈ a(n) ∧ p(n) ⊆ q ) + PDNp : {!!} -- PD⊆⊆N P C (& p) + PDNp = PD∋p f02 : {x : Ordinal} → odef q x → odef P x f02 {x} lt = subst (λ k → def (od P) k) &iso (incl q⊆P (subst (λ k → def (od q) k) (sym &iso) lt) ) f03 : {x : Ordinal} → odef p x → odef q x f03 {x} lt = subst (λ k → def (od q) k) &iso (incl p⊆q (subst (λ k → def (od p) k) (sym &iso) lt) ) - f04 : (ip : Ordinal) → PDN C P ip → (x : Ordinal) → ((y : Ordinal) → y o< x → ip o< osuc y → PDN C P y) → ip o< osuc x → PDN C P x - f04 ip PD x prev lt with trio< ip (osuc x) - ... | tri≈ ¬a b ¬c = {!!} - ... | tri> ¬a ¬b c = ⊥-elim ( o<> c lt ) - ... | tri< a ¬b ¬c with osuc-≡< a - ... | case1 ip=x = {!!} - ... | case2 ip<x = record { gr = ctl← C (find-p C P (PDN.gr PD) ( next-p x (λ p → PGHOD (PDN.gr PD) C P (& p)))) f05 - ; pn<gr = f07 ; x∈PP = f06 } where - next1 : Ordinal - next1 = find-p C P (gr PD) (next-p x (λ p₁ → PGHOD (gr PD) C P (& p₁))) - f05 : next1 o< ctl-M C - f05 = {!!} - f06 : odef (Power P) x - f06 = {!!} - f07 : (y : Ordinal) → odef (* x) y → odef (* (find-p C P (ctl← C next1 f05) o∅)) y - f07 = {!!} - f01 : (ip iq : Ordinal) → iq o< osuc (& P) → PDN C P ip → ip o< osuc iq → PDN C P iq - f01 ip iq q<P PD = TransFinite0 {λ x → ip o< osuc x → PDN C P x } (f04 ip PD ) iq - f2 : {p q : HOD} → PDHOD C P ∋ p → PDHOD C P ∋ q → PDHOD C P ∋ (p ∩ q) + next1 : Ordinal + next1 = {!!} -- find-p P C (gr PD) (next-p x (λ p₁ → PGHOD (gr PD) P C (& p₁))) + f05 : next1 o< ctl-M C + f05 = {!!} + f06 : odef (Power P) (& q) + f06 = {!!} + f07 : (y : Ordinal) → odef (* (& q)) y → odef (* {!!} ) y + f07 = {!!} + f2 : {p q : HOD} → PDHOD P p0 C ∋ p → PDHOD P p0 C ∋ q → PDHOD P p0 C ∋ (p ∩ q) f2 {p} {q} PD∋p PD∋q = {!!} @@ -187,8 +184,9 @@ → ( p ⊆ q P∋p) ∧ ( p ⊆ r P∋p) → ∀ ( s : HOD ) → Power P ∋ s → ¬ (( q P∋p ⊆ s ) ∧ ( r P∋p ⊆ s )) -lemma725 : (C : CountableModel) (P : HOD ) - → Incompatible P → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter C P ))) +lemma725 : (P p : HOD ) (C : CountableModel P) + → * (ctl-M C) ∋ Power P + → Incompatible P → ¬ ( * (ctl-M C) ∋ filter ( genf ( P-GenericFilter P p C ))) lemma725 = {!!} open import PFOD O @@ -201,13 +199,28 @@ lemma725-1 : Incompatible HODω2 lemma725-1 = {!!} -lemma726 : (C : CountableModel) (P : HOD ) - → Union ( filter ( genf ( P-GenericFilter C HODω2 ))) =h= ω→2 +lemma726 : (C : CountableModel HODω2) + → Union ( Replace HODω2 (λ p → filter ( genf ( P-GenericFilter HODω2 p C )))) =h= ω→2 lemma726 = {!!} -- -- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } -- + + +record valR (x y P : HOD) (G : GenericFilter P) : Set (suc n) where + field + p : HOD + p∈G : filter (genf G) ∋ p + is-val : x ∋ < y , p > + +val : (x : HOD) (P : HOD ) + → (G : GenericFilter P) + → HOD +val x P G = record { od = record { odef = ε-induction { λ y → (z : Ordinal) → odef y (& z) → {!!} } (λ {z} Prev → {!!} ) } + ; odmax = {!!} ; <odmax = {!!} } + +-- -- W (ω , H ( ω , 2 )) = { p ∈ ( Nat → H (ω , 2) ) | { i ∈ Nat → p i ≠ i1 } is finite } --