Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 64:87df00599a0e
equal
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 May 2019 18:50:57 +0900 |
parents | ba43f7ff60d4 |
children | 164ad5a703d8 |
files | ordinal-definable.agda |
diffstat | 1 files changed, 29 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Wed May 29 14:28:26 2019 +0900 +++ b/ordinal-definable.agda Wed May 29 18:50:57 2019 +0900 @@ -353,19 +353,35 @@ omin→cmin {x} {not} m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl minimul<x : (x : OD {suc n} ) → (not : ¬ x == od∅ ) → x ∋ minimul x not minimul<x x not = omin→cmin {x} {not} (min<x (minord x not)) - omin∅→min∅ : (ox : Ordinal {suc n}) { x : OD {suc n} } → ( x ≡ ord→od ox ) → {non : ¬ ( ord→od ox == od∅)} → {not : ¬ (x == od∅)} - → mino (ominimal ox (∅10 refl non)) ≡ o∅ → mino (ominimal (od→ord x) (∅9 not)) ≡ o∅ - omin∅→min∅ ox {x} refl {non} {not} eq with ominimal ox (∅10 refl non) - omin∅→min∅ record { lv = Zero ; ord = (Φ .0) } refl eq | record { mino = mino ; min<x = case1 () } - omin∅→min∅ record { lv = Zero ; ord = (Φ .0) } refl eq | record { mino = mino ; min<x = case2 () } - omin∅→min∅ record { lv = Zero ; ord = (OSuc .0 ord₁) } refl refl | record { mino = .o∅ ; min<x = case1 () } - omin∅→min∅ record { lv = Zero ; ord = (OSuc .0 ord₁) } refl refl | record { mino = .o∅ ; min<x = case2 Φ< } = {!!} - omin∅→min∅ record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } refl refl | record { mino = .o∅ ; min<x = case1 (s≤s z≤n) } = {!!} - omin∅→min∅ record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } refl eq | record { mino = mino ; min<x = case2 () } - omin∅→min∅ record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } refl refl | record { mino = .o∅ ; min<x = case1 (s≤s z≤n) } = {!!} - omin∅→min∅ record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } refl refl | record { mino = .o∅ ; min<x = case2 () } - omin∅→min∅ record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } refl refl | record { mino = .o∅ ; min<x = case1 (s≤s z≤n) } = {!!} - omin∅→min∅ record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } refl refl | record { mino = .o∅ ; min<x = case2 () } + omin∅≡min∅ : (ox : Ordinal {suc n}) → {not : ¬ ( ord→od ox == od∅)} + → mino (ominimal ox (∅10 refl not)) ≡ mino (ominimal (od→ord (ord→od ox)) (∅9 not)) + omin∅≡min∅ ox {not} with ominimal ox (∅10 refl not) + omin∅≡min∅ record { lv = Zero ; ord = (Φ .0) } | record { mino = mino ; min<x = case1 () } + omin∅≡min∅ record { lv = Zero ; ord = (Φ .0) } | record { mino = mino ; min<x = case2 () } + omin∅≡min∅ record { lv = Zero ; ord = (OSuc .0 ord₁) } | record { mino = _ ; min<x = case1 () } + omin∅≡min∅ record { lv = Zero ; ord = (OSuc .0 ord₁) } | record { mino = record { lv = 0 ; ord = Φ 0 } ; min<x = case2 Φ< } = {!!} + omin∅≡min∅ record { lv = Zero ; ord = (OSuc .0 ord₁) } {_} | record { mino = record { lv = .0 ; ord = .(OSuc 0 _) } ; min<x = case2 (s< x)} = {!!} + omin∅≡min∅ record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } | record { mino = _ ; min<x = case1 (s≤s z≤n) } = {!!} + omin∅≡min∅ record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } | record { mino = mino ; min<x = case2 () } + omin∅≡min∅ record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } | record { mino = _ ; min<x = case1 (s≤s z≤n) } = {!!} + omin∅≡min∅ record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } | record { mino = _ ; min<x = case2 lt } = {!!} + omin∅≡min∅ record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } | record { mino = _ ; min<x = case1 (s≤s z≤n) } = {!!} + omin∅≡min∅ record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } | record { mino = _ ; min<x = case2 lt } = {!!} + omin∅≡min∅ record { lv = (Suc lv₁) ; ord = ord } {not} | record { mino = mino ; min<x = min<x } = {!!} + omin∅→min∅ : (ox : Ordinal {suc n}) { x : OD {suc n} } → {not : ¬ ( ord→od ox == od∅)} + → mino (ominimal ox (∅10 refl not)) ≡ o∅ → mino (ominimal (od→ord (ord→od ox)) (∅9 not)) ≡ o∅ + omin∅→min∅ ox {x} {not} eq with ominimal ox (∅10 refl not) + omin∅→min∅ record { lv = Zero ; ord = (Φ .0) } eq | record { mino = mino ; min<x = case1 () } + omin∅→min∅ record { lv = Zero ; ord = (Φ .0) } eq | record { mino = mino ; min<x = case2 () } + omin∅→min∅ record { lv = Zero ; ord = (OSuc .0 ord₁) } refl | record { mino = .o∅ ; min<x = case1 () } + omin∅→min∅ record { lv = Zero ; ord = (OSuc .0 ord₁) } refl | record { mino = .o∅ ; min<x = case2 Φ< } = + subst (λ k → ? ≡ k ) ? (omin∅→min∅ o∅ {!!}) + omin∅→min∅ record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } refl | record { mino = .o∅ ; min<x = case1 (s≤s z≤n) } = {!!} + omin∅→min∅ record { lv = (Suc lv₁) ; ord = (Φ .(Suc lv₁)) } eq | record { mino = mino ; min<x = case2 () } + omin∅→min∅ record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } refl | record { mino = .o∅ ; min<x = case1 (s≤s z≤n) } = {!!} + omin∅→min∅ record { lv = (Suc lv₁) ; ord = (OSuc .(Suc lv₁) ord₁) } refl | record { mino = .o∅ ; min<x = case2 () } + omin∅→min∅ record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } refl | record { mino = .o∅ ; min<x = case1 (s≤s z≤n) } = {!!} + omin∅→min∅ record { lv = (Suc lv₁) ; ord = (ℵ .lv₁) } refl | record { mino = .o∅ ; min<x = case2 () } regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) regularity x not = regularity-ord (od→ord x) {x} (sym oiso ) not where