Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1215:881e85e12e38
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Mar 2023 14:46:53 +0900 |
parents | 93e1869bb57c |
children | 6861b48c1e08 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 13 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Sun Mar 05 13:41:57 2023 +0900 +++ b/src/Tychonoff.agda Sun Mar 05 14:46:53 2023 +0900 @@ -341,6 +341,13 @@ F⊆pxq {x} fx {y} xy = f⊆L F fx y (subst (λ k → odef k y) (sym *iso) xy) FPSet : HOD FPSet = Replace' (filter F) (λ x fx → Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) ))) + FPSet∋zpq : {q : HOD} → q ⊆ P → filter F ∋ ZFP q Q → FPSet ∋ q + FPSet∋zpq {q} q⊆P fq = record { z = _ ; az = ? ; x=ψz = ? } where + ty04 : q ≡ Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq ) xy))) + ty04 = ==→o≡ record { eq→ = ? ; eq← = ? } where + ty041 : {x : Ordinal} → odef q x → odef (Replace' (* (& (ZFP q Q))) + (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy)))) x + ty041 {x} qx = record { z = _ ; az = subst (λ k → odef k (& < * x , * ? > )) (sym *iso) (ab-pair qx ? ) ; x=ψz = ? } FPSet⊆PP : FPSet ⊆ Power P FPSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } @@ -349,7 +356,8 @@ FP : Filter {Power P} {P} (λ x → x) FP = record { filter = FPSet ; f⊆L = FPSet⊆PP ; filter1 = ty01 ; filter2 = {!!} } where ty01 : {p q : HOD} → Power P ∋ q → FPSet ∋ p → p ⊆ q → FPSet ∋ q - ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = record { z = _ ; az = ty02 ; x=ψz = cong (&) ty04 } where + ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = FPSet∋zpq q⊆P (ty10 ty05 ty06 ) + where -- p ≡ (Replace' (* x) (λ y xy → (zπ1 (F⊆pxq (subst (odef (filter.Filter.filter F)) (sym &iso) fx) xy)) -- x = ( px , qx ) , px ⊆ q ty03 : Power (ZFP P Q) ∋ ZFP q Q @@ -358,6 +366,8 @@ p⊆P {w} pw with subst (λ k → odef k w) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψz)) pw ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k) (sym (trans x=ψz1 &iso)) (zp1 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) (subst (λ k → odef (* x) k) (sym &iso) az1 )) ) + q⊆P : q ⊆ P + q⊆P {w} qw = Pq _ (subst (λ k → odef k w ) (sym *iso) qw ) x⊆pxq : * x ⊆ ZFP p Q x⊆pxq {w} xw with F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) xw ... | ab-pair {a} {b} pw qw = ab-pair ty08 qw where @@ -370,11 +380,8 @@ ty05 = filter1 F (λ z wz → isP→PxQ p⊆P (subst (λ k → odef k z) *iso wz)) (subst (λ k → odef (filter F) k) (sym &iso) fx) x⊆pxq ty06 : ZFP p Q ⊆ ZFP q Q ty06 (ab-pair wp wq ) = ab-pair (p⊆q wp) wq - ty02 : filter F ∋ ZFP q Q - ty02 = filter1 F ty03 ty05 ty06 - ty04 : q ≡ Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 - (F⊆pxq (subst (odef (filter F)) (sym &iso) ty02) xy))) - ty04 = ? + ty10 : filter F ∋ ZFP p Q → ZFP p Q ⊆ ZFP q Q → filter F ∋ ZFP q Q + ty10 fzp zp⊆zq = filter1 F ty03 fzp zp⊆zq UFP : ultra-filter FP UFP = record { proper = {!!} ; ultra = {!!} }