Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 458:882c24efdc3f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Mar 2022 20:36:42 +0900 |
parents | 5f8243d1d41b |
children | 3d84389cc43f |
files | src/filter.agda |
diffstat | 1 files changed, 46 insertions(+), 43 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Thu Mar 17 16:40:54 2022 +0900 +++ b/src/filter.agda Fri Mar 18 20:36:42 2022 +0900 @@ -38,7 +38,7 @@ open Bool -- Kunen p.76 and p.53, we use ⊆ -record Filter ( L : HOD ) : Set (suc n) where +record Filter { L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where field filter : HOD f⊆L : filter ⊆ L @@ -47,21 +47,23 @@ open Filter -record prime-filter { L : HOD } (F : Filter L) : Set (suc (suc n)) where +record prime-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter LP) : Set (suc (suc n)) where field proper : ¬ (filter F ∋ od∅) - prime : {p q : HOD } → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) + prime : {p q : HOD } → L ∋ p → L ∋ q → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) -record ultra-filter { L : HOD } (P : HOD ) (F : Filter L) : Set (suc (suc n)) where +record ultra-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter LP) : Set (suc (suc n)) where field - L⊆PP : L ⊆ Power P proper : ¬ (filter F ∋ od∅) ultra : {p : HOD } → L ∋ p → ( filter F ∋ p ) ∨ ( filter F ∋ ( P \ p) ) open _⊆_ -∈-filter : {L p : HOD} → (F : Filter L ) → filter F ∋ p → L ∋ p -∈-filter {L} {p} F lt = incl ( f⊆L F) lt +∈-filter : {L P p : HOD} → {LP : L ⊆ Power P} → (F : Filter LP ) → filter F ∋ p → L ∋ p +∈-filter {L} {p} {LP} F lt = incl ( f⊆L F) lt + +⊆-filter : {L P p q : HOD } → {LP : L ⊆ Power P } → (F : Filter LP) → L ∋ q → q ⊆ P +⊆-filter {L} {P} {p} {q} {LP} F lt = power→⊆ P q ( incl LP lt ) ∪-lemma1 : {L p q : HOD } → (p ∪ q) ⊆ L → p ⊆ L ∪-lemma1 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case1 p∋x) } @@ -69,12 +71,6 @@ ∪-lemma2 : {L p q : HOD } → (p ∪ q) ⊆ L → q ⊆ L ∪-lemma2 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case2 p∋x) } -∪-lemma3 : {L P p q : HOD } → L ⊆ Power P → L ∋ (p ∪ q) → L ∋ p -∪-lemma3 = {!!} - -∪-lemma4 : {L P p q : HOD } → L ⊆ Power P → L ∋ (p ∪ q) → L ∋ q -∪-lemma4 = {!!} - q∩q⊆q : {p q : HOD } → (q ∩ p) ⊆ q q∩q⊆q = record { incl = λ lt → proj1 lt } @@ -85,28 +81,28 @@ -- ultra filter is prime -- -filter-lemma1 : {P L : HOD} → (F : Filter L) → ∀ {p q : HOD } → ultra-filter P F → prime-filter F -filter-lemma1 {P} {L} F u = record { +filter-lemma1 : {P L : HOD} → (LP : L ⊆ Power P) → (F : Filter LP) → ∀ {p q : HOD } → ultra-filter F → prime-filter F +filter-lemma1 {P} {L} LP F u = record { proper = ultra-filter.proper u ; prime = lemma3 } where - lemma3 : {p q : HOD} → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) - lemma3 {p} {q} lt with ultra-filter.ultra u (∈-filter F lt) - ... | case1 p∈P = case1 {!!} -- (∪-lemma3 (ultra-filter.L⊆PP u) ? ) -- : OD.def (od (filter F)) (& p) - ... | case2 ¬p∈P = case2 (filter1 F {q ∩ (L \ p)} {!!} lemma7 lemma8) where - lemma5 : ((p ∪ q ) ∩ (L \ p)) =h= (q ∩ (L \ p)) + lemma3 : {p q : HOD} → L ∋ p → L ∋ q → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) + lemma3 {p} {q} Lp Lq lt with ultra-filter.ultra u Lp + ... | case1 p∈P = case1 p∈P + ... | case2 ¬p∈P = case2 (filter1 F {q ∩ (P \ p)} Lq lemma7 lemma8) where + lemma5 : ((p ∪ q ) ∩ (P \ p)) =h= (q ∩ (P \ p)) lemma5 = record { eq→ = λ {x} lt → ⟪ lemma4 x lt , proj2 lt ⟫ ; eq← = λ {x} lt → ⟪ case2 (proj1 lt) , proj2 lt ⟫ } where - lemma4 : (x : Ordinal ) → odef ((p ∪ q) ∩ (L \ p)) x → odef q x + lemma4 : (x : Ordinal ) → odef ((p ∪ q) ∩ (P \ p)) x → odef q x lemma4 x lt with proj1 lt lemma4 x lt | case1 px = ⊥-elim ( proj2 (proj2 lt) px ) lemma4 x lt | case2 qx = qx lemma6 : filter F ∋ ((p ∪ q ) ∩ (P \ p)) - lemma6 = {!!} -- filter2 F lt ¬p∈P - lemma7 : filter F ∋ (q ∩ (L \ p)) - lemma7 = subst (λ k → filter F ∋ k ) (==→o≡ lemma5 ) {!!} - lemma8 : (q ∩ (L \ p)) ⊆ q + lemma6 = filter2 F lt ¬p∈P + lemma7 : filter F ∋ (q ∩ (P \ p)) + lemma7 = subst (λ k → filter F ∋ k ) (==→o≡ lemma5 ) lemma6 + lemma8 : (q ∩ (P \ p)) ⊆ q lemma8 = q∩q⊆q ----- @@ -114,23 +110,30 @@ -- if Filter contains L, prime filter is ultra -- -filter-lemma2 : {P L : HOD} → (F : Filter L) → filter F ∋ L → prime-filter F → ultra-filter P F -filter-lemma2 {P} {L} F f∋L prime = record { - L⊆PP = {!!} - ; proper = prime-filter.proper prime - ; ultra = λ {p} p⊆L → prime-filter.prime prime {!!} -- (lemma p p⊆L) +filter-lemma2 : {P L : HOD} → (LP : L ⊆ Power P) → (F : Filter LP) → filter F ∋ L → prime-filter F → ultra-filter F +filter-lemma2 {P} {L} LP F f∋L prime = record { + proper = prime-filter.proper prime + ; ultra = λ {p} p⊆L → prime-filter.prime prime {!!} {!!} {!!} -- (lemma p p⊆L) } where open _==_ - p+1-p=1 : {p : HOD} → p ⊆ L → L =h= (p ∪ (L \ p)) + p+1-p=1 : {p : HOD} → p ⊆ P → P =h= (p ∪ (P \ p)) eq→ (p+1-p=1 {p} p⊆L) {x} lt with ODC.decp O (odef p x) eq→ (p+1-p=1 {p} p⊆L) {x} lt | yes p∋x = case1 p∋x eq→ (p+1-p=1 {p} p⊆L) {x} lt | no ¬p = case2 ⟪ lt , ¬p ⟫ - eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → odef L k ) &iso (incl p⊆L ( subst (λ k → odef p k) (sym &iso) p∋x )) + eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → odef P k ) &iso (incl p⊆L ( subst (λ k → odef p k) (sym &iso) p∋x )) eq← (p+1-p=1 {p} p⊆L) {x} ( case2 ¬p ) = proj1 ¬p - lemma : (p : HOD) → p ⊆ L → filter F ∋ (p ∪ (P \ p)) - lemma p p⊆L = {!!} -- subst (λ k → filter F ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) f∋L + lemma : (p : HOD) → p ⊆ P → filter F ∋ (p ∪ (P \ p)) + lemma p p⊆L = subst (λ k → filter F ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) {!!} -- f∋L -record Dense (L : HOD ) : Set (suc n) where +----- +-- +-- if there is a filter , there is a ultra filter under the axiom of choise +-- + +filter→ultra : {P L : HOD} → (LP : L ⊆ Power P) → (F : Filter LP) → ultra-filter F +filter→ultra {P} {L} LP F = ? + +record Dense {L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where field dense : HOD d⊆P : dense ⊆ L @@ -138,7 +141,7 @@ dense-d : { p : HOD} → (lt : L ∋ p) → dense ∋ dense-f lt dense-p : { p : HOD} → (lt : L ∋ p) → (dense-f lt) ⊆ p -record Ideal ( L : HOD ) : Set (suc n) where +record Ideal {L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where field ideal : HOD i⊆L : ideal ⊆ L @@ -147,15 +150,15 @@ open Ideal -proper-ideal : {L : HOD} → (P : Ideal L ) → {p : HOD} → Set n -proper-ideal {L} P {p} = ideal P ∋ od∅ +proper-ideal : {L P : HOD} → (LP : L ⊆ Power P) → (P : Ideal LP ) → {p : HOD} → Set n +proper-ideal {L} {P} LP I = ideal I ∋ od∅ -prime-ideal : {L : HOD} → Ideal L → ∀ {p q : HOD } → Set n -prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q ) +prime-ideal : {L P : HOD} → (LP : L ⊆ Power P) → Ideal LP → ∀ {p q : HOD } → Set n +prime-ideal {L} {P} LP I {p} {q} = ideal I ∋ ( p ∩ q) → ( ideal I ∋ p ) ∨ ( ideal I ∋ q ) -record GenericFilter (L : HOD) : Set (suc n) where +record GenericFilter {L P : HOD} (LP : L ⊆ Power P) : Set (suc n) where field - genf : Filter L - generic : (D : Dense L ) → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ ) + genf : Filter LP + generic : (D : Dense LP ) → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ )