Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 35:88b77cecaeba
ordinal fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 22 May 2019 19:24:11 +0900 |
parents | c9ad0d97ce41 |
children | 4d64509067d0 |
files | ordinal.agda |
diffstat | 1 files changed, 42 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal.agda Wed May 22 11:52:49 2019 +0900 +++ b/ordinal.agda Wed May 22 19:24:11 2019 +0900 @@ -28,6 +28,7 @@ ℵΦ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → Φ (Suc lx) d< (ℵ lx) ℵ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → ¬ℵ x → OSuc (Suc lx) x d< (ℵ lx) ℵs< : {lx : Nat} → (ℵ lx) d< OSuc (Suc lx) (ℵ lx) + ℵss< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → (ℵ lx) d< x → (ℵ lx) d< OSuc (Suc lx) x open Ordinal @@ -58,6 +59,12 @@ trio<> {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t trio<> {_} {.(Suc _)} {.(OSuc (Suc _) (ℵ _))} {.(ℵ _)} ℵs< (ℵ< {_} {.(ℵ _)} ()) trio<> {_} {.(Suc _)} {.(ℵ _)} {.(OSuc (Suc _) (ℵ _))} (ℵ< ()) ℵs< +trio<> {n} {lx} {.(OSuc lx _)} {.(Φ lx)} Φ< () +trio<> {n} {.(Suc _)} {.(ℵ _)} {.(Φ (Suc _))} ℵΦ< () +trio<> {n} {.(Suc _)} {.(ℵ _)} {.(OSuc (Suc _) (Φ (Suc _)))} (ℵ< ¬ℵΦ) (ℵss< ()) +trio<> {n} {.(Suc _)} {.(ℵ _)} {.(OSuc (Suc _) (OSuc (Suc _) _))} (ℵ< (¬ℵs x)) (ℵss< x<y) = trio<> (ℵ< x) x<y +trio<> {n} {.(Suc _)} {.(OSuc (Suc _) (Φ (Suc _)))} {.(ℵ _)} (ℵss< ()) (ℵ< ¬ℵΦ) +trio<> {n} {.(Suc _)} {.(OSuc (Suc _) (OSuc (Suc _) _))} {.(ℵ _)} (ℵss< y<x) (ℵ< (¬ℵs x)) = trio<> y<x (ℵ< x) trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ trio<≡ refl = ≡→¬d< @@ -68,15 +75,25 @@ triO : {n : Level} → {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) triO {n} {lx} {ly} x y = <-cmp lx ly +fin : {n : Level} → {lx : Nat} → {y : OrdinalD {n} (Suc lx) } → y d< (ℵ lx) → ¬ℵ y +fin {_} {_} {Φ (Suc _)} ℵΦ< = ¬ℵΦ +fin {_} {_} {OSuc (Suc _) _} (ℵ< x) = ¬ℵs x + triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {_} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) triOrdd {_} {.(Suc lv)} (Φ (Suc lv)) (ℵ lv) = tri< (ℵΦ< {_} {lv} {Φ (Suc lv)} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {_} {lv} {Φ (Suc lv)} )) ) triOrdd {_} {Suc lv} (ℵ lv) (Φ (Suc lv)) = tri> ( λ lt → trio<> lt (ℵΦ< {_} {lv} {Φ (Suc lv)} ) ) (λ ()) (ℵΦ< {_} {lv} {Φ (Suc lv)} ) -triOrdd {_} {Suc lv} (ℵ lv) (OSuc (Suc lv) y) = tri> ( λ lt → trio<> lt (ℵ< {_} {lv} {y} {!!}) ) (λ ()) (ℵ< {_} {lv} {y} {!!}) +triOrdd {_} {Suc lv} (ℵ lv) (OSuc (Suc lv) y ) with triOrdd (ℵ lv) y +triOrdd {_} {Suc lv} (ℵ lv) (OSuc .(Suc lv) y) | tri< a ¬b ¬c = tri< (ℵss< a) (λ ()) (trio<> (ℵss< a) ) +triOrdd {_} {Suc lv} (ℵ lv) (OSuc .(Suc lv) y) | tri≈ ¬a refl ¬c = tri< ℵs< (λ ()) ( λ lt → trio<> lt ℵs< ) +triOrdd {_} {Suc lv} (ℵ lv) (OSuc .(Suc lv) y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt ( ℵ< (fin c)) ) (λ ()) ( ℵ< (fin c) ) triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< -triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) = tri< (ℵ< {!!}) (λ ()) (λ lt → trio<> lt (ℵ< {!!}) ) +triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) with triOrdd x (ℵ lv) +triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) | tri< a ¬b ¬c = tri< (ℵ< (fin a ) ) (λ ()) ( λ lt → trio<> lt (ℵ< (fin a ))) +triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) | tri≈ ¬a refl ¬c = tri> (λ lt → trio<> lt ℵs< ) (λ ()) ℵs< +triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) | tri> ¬a ¬b c = tri> (λ lt → trio<> lt (ℵss< c )) (λ ()) ( ℵss< c ) triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) triOrdd {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< @@ -88,20 +105,36 @@ d<→lv ℵΦ< = refl d<→lv (ℵ< _) = refl d<→lv ℵs< = refl +d<→lv (ℵss< _) = refl + +xsyℵ : {n : Level} {lx : Nat} {x y : OrdinalD {n} lx } → x d< y → ¬ℵ y → ¬ℵ x +xsyℵ {_} {_} {Φ lv₁} {y} x<y t = ¬ℵΦ +xsyℵ {_} {_} {OSuc lv₁ x} {OSuc lv₁ y} (s< x<y) (¬ℵs t) = ¬ℵs ( xsyℵ x<y t) +xsyℵ {_} {_} {OSuc .(Suc _) x} {.(ℵ _)} (ℵ< x₁) () +xsyℵ {_} {_} {ℵ lv₁} {.(OSuc (Suc lv₁) (ℵ lv₁))} ℵs< (¬ℵs t) = t +xsyℵ (ℵss< ()) (¬ℵs ¬ℵΦ) +xsyℵ (ℵss< x<y) (¬ℵs t) = xsyℵ x<y t orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n} lx } → x d< y → y d< z → x d< z orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< orddtrans {_} {Suc lx} {Φ (Suc lx)} {OSuc (Suc lx) y} {ℵ lx} Φ< (ℵ< _) = ℵΦ< {_} {lx} {y} orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z ) orddtrans {_} {Suc lx} {.(OSuc (Suc lx) _)} {.(OSuc (Suc lx) (Φ (Suc lx)))} {.(ℵ lx)} (s< ()) (ℵ< ¬ℵΦ) -orddtrans {_} {Suc lx} {OSuc (Suc lx) x} {OSuc (Suc lx) (OSuc (Suc lx) y)} {.(ℵ lx)} (s< x<y) (ℵ< (¬ℵs nℵ)) = ℵ< lemma where - lemma : ¬ℵ x - lemma = {!!} -orddtrans ℵΦ< ℵs< = {!!} -orddtrans (ℵ< ¬ℵΦ) ℵs< = {!!} -orddtrans (ℵ< (¬ℵs nℵ)) ℵs< = {!!} -orddtrans ℵs< (s< ℵs<) = {!!} orddtrans ℵs< (ℵ< ()) +orddtrans {n} {Suc lx} {OSuc (Suc lx) x} {OSuc (Suc ly) y} {ℵ _} (s< x<y) (ℵ< t) = ℵ< ( xsyℵ x<y t ) +orddtrans {n} {.(Suc _)} {.(Φ (Suc _))} {.(ℵ _)} {.(OSuc (Suc _) (ℵ _))} ℵΦ< ℵs< = Φ< +orddtrans {n} {.(Suc _)} {OSuc (Suc _) .(Φ (Suc _))} {.(ℵ _)} {OSuc (Suc _) (ℵ k)} (ℵ< ¬ℵΦ) ℵs< = s< ( ℵΦ< {_} {_} {ℵ k} ) +orddtrans {n} {.(Suc _)} {OSuc (Suc lv) (OSuc (Suc _) x)} {ℵ lv} {.(OSuc (Suc _) (ℵ _))} (ℵ< (¬ℵs t)) ℵs< = s< ( ℵ< t ) +orddtrans {n} {.(Suc lv)} {ℵ lv} {OSuc .(Suc lv) (ℵ lv)} {OSuc .(Suc lv) .(OSuc (Suc lv) (ℵ lv))} ℵs< (s< ℵs<) = ℵss< ℵs< +orddtrans ℵΦ< (ℵss< y<z) = Φ< +orddtrans (ℵ< {lx} {Φ .(Suc lx)} nxx) (ℵss< {_} {k} y<z) = s< (orddtrans (ℵΦ< {_} {_} {k}) y<z) +orddtrans (ℵ< {lx} {OSuc .(Suc lx) xx} (¬ℵs nxx)) (ℵss< y<z) = s< (orddtrans (ℵ< nxx) y<z) +orddtrans (ℵ< {.lv₁} {ℵ lv₁} ()) (ℵss< y<z) +orddtrans (ℵss< x<y) (s< y<z) = ℵss< ( orddtrans x<y y<z ) +orddtrans (ℵss< ()) (ℵ< ¬ℵΦ) +orddtrans (ℵss< ℵs<) (ℵ< (¬ℵs ())) +orddtrans (ℵss< (ℵss< x<y)) (ℵ< (¬ℵs x)) = orddtrans (ℵss< x<y) ( ℵ< x ) +orddtrans {n} {Suc lx} {x} {y} {z} ℵs< (s< (ℵss< {lx} {ss} y<z)) = ℵss< ( ℵss< y<z ) max : (x y : Nat) → Nat max Zero Zero = Zero