Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 114:89204edb71fa
f x d
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 25 Jun 2019 21:05:07 +0900 |
parents | 5f97ebaeb89b |
children | 277c2f3b8acb |
files | HOD.agda |
diffstat | 1 files changed, 8 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Tue Jun 25 16:04:31 2019 +0900 +++ b/HOD.agda Tue Jun 25 21:05:07 2019 +0900 @@ -17,7 +17,7 @@ record HOD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n - otrans : {x y : Ordinal {n} } → def x → y o< x → def y + otrans : {x : Ordinal {n} } → def x → { y : Ordinal {n} } → y o< x → def y open HOD open import Data.Unit @@ -46,8 +46,8 @@ -- Ordinal in HOD ( and ZFSet ) Ord : { n : Level } → ( a : Ordinal {n} ) → HOD {n} Ord {n} a = record { def = λ y → y o< a ; otrans = lemma } where - lemma : {x y : Ordinal} → x o< a → y o< x → y o< a - lemma {x} {y} x<a y<x = ordtrans {n} {y} {x} {a} y<x x<a + lemma : {x : Ordinal} → x o< a → {y : Ordinal} → y o< x → y o< a + lemma {x} x<a {y} y<x = ordtrans {n} {y} {x} {a} y<x x<a -- od∅ : {n : Level} → HOD {n} -- od∅ {n} = record { def = λ _ → Lift n ⊥ } @@ -83,8 +83,8 @@ cseq : {n : Level} → HOD {n} → HOD {n} cseq x = record { def = λ y → osuc y o< (od→ord x) ; otrans = lemma } where - lemma : {ox oy : Ordinal} → osuc ox o< od→ord x → oy o< ox → osuc oy o< od→ord x - lemma {ox} {oy} oox<Ox oy<ox = ordtrans (osucc oy<ox ) oox<Ox + lemma : {ox : Ordinal} → osuc ox o< od→ord x → { oy : Ordinal}→ oy o< ox → osuc oy o< od→ord x + lemma {ox} oox<Ox {oy} oy<ox = ordtrans (osucc oy<ox ) oox<Ox def-subst : {n : Level } {Z : HOD {n}} {X : Ordinal {n} }{z : HOD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df @@ -247,17 +247,11 @@ Replace : HOD {suc n} → (HOD {suc n} → HOD {suc n} ) → HOD {suc n} Replace X ψ = sup-od ψ Select : (X : HOD {suc n} ) → ((x : HOD {suc n} ) → X ∋ x → Set (suc n) ) → HOD {suc n} - Select X ψ = record { def = λ x → (d : def X x ) → f x d ; otrans = ftrans } where + Select X ψ = record { def = λ x → (d : def X x) → f x d ; otrans = λ {x} g {y} d1 → {!!} } where f : (x : Ordinal {suc n}) → (d : def X x ) → Set (suc n) f x d = ψ (ord→od x) (subst (λ k → def X k ) (sym diso) d) - ftrans : {x y : Ordinal} → ((d : def X x) → f x d) → y o< x → (d : def X y) → f y d - ftrans {x} {y} g = TransFinite {suc n} {λ y1 → (y1<x : y1 o< x) → (d1 : def X y1) → f y1 d1} lemma1 lemma2 y where - lemma1 : (lx : Nat) → record { lv = lx ; ord = Φ lx } o< x → (d1 : def X (record { lv = lx ; ord = Φ lx })) → f (record { lv = lx ; ord = Φ lx }) d1 - lemma1 = {!!} - lemma2 : (lx : Nat) (x₁ : OrdinalD lx) → (record { lv = lx ; ord = x₁ } o< x → - (d1 : def X (record { lv = lx ; ord = x₁ })) → f (record { lv = lx ; ord = x₁ }) d1) → record { lv = lx ; ord = OSuc lx x₁ } o< x → - (d1 : def X (record { lv = lx ; ord = OSuc lx x₁ })) → f (record { lv = lx ; ord = OSuc lx x₁ }) d1 - lemma2 = {!!} + ftrans' : {x : Ordinal} ( g : (x : Ordinal {suc n} ) (d : def X x ) → f x d ) → {y : Ordinal} → y o< x → (d : def X y) → f y d + ftrans' {x} g {y} y<x d = g y d _,_ : HOD {suc n} → HOD {suc n} → HOD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) Union : HOD {suc n} → HOD {suc n}