Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1474:893954e484a4
Bernstein fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 23 Jun 2024 09:32:40 +0900 (2024-06-23) |
parents | aca42b19db4c |
children | 6752e2ff4dc6 |
files | src/cardinal.agda |
diffstat | 1 files changed, 39 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Sun Jun 23 07:04:50 2024 +0900 +++ b/src/cardinal.agda Sun Jun 23 09:32:40 2024 +0900 @@ -47,10 +47,10 @@ import filter -open import Relation.Nullary -- open import Relation.Binary hiding ( _⇔_ ) open import Data.Empty open import Relation.Binary.PropositionalEquality +open import Relation.Binary.Definitions open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgebra @@ -199,7 +199,7 @@ Bernstein : {a b : Ordinal } → Injection a b → Injection b a → HODBijection (* a) (* b) Bernstein {a} {b} ( fi @ record { i→ = f ; iB = b∋f ; inject = f-inject }) ( gi @ record { i→ = g ; iB = a∋g ; inject = g-inject }) - = proj1 (==-bi (proj2 (==-bi (bi-∪ bi-UC bi-fUC ? ? ) ) (==-sym b=fUC∨b-fUC)) ) (==-sym a=UC∨a-UC) + = proj1 (==-bi (proj2 (==-bi (bi-∪ bi-UC bi-fUC exUC exfUC ) ) (==-sym b=fUC∨b-fUC)) ) (==-sym a=UC∨a-UC) where gf : Injection a a gf = record { i→ = λ x → g (f x ) ; iB = λ x ax → a∋g _ (b∋f x ax) @@ -252,8 +252,7 @@ exUC : (UC ∩ a-UC) =h= od∅ exUC = record { eq→ = be00 ; eq← = be01 } where be00 : {x : Ordinal} → odef (UC ∩ a-UC) x → odef od∅ x - be00 {x} ⟪ a-g ax₁ ¬ib , ⟪ ax , nuc ⟫ ⟫ = ? - be00 {x} ⟪ next-gf ix uc , ⟪ ax , nuc ⟫ ⟫ = ? + be00 {x} ⟪ uc , ⟪ ax , nuc ⟫ ⟫ = ⊥-elim ( nuc uc ) be01 : {x : Ordinal} → odef od∅ x → odef (UC ∩ a-UC) x be01 {x} lt = ⊥-elim ( ¬x<0 lt ) @@ -279,16 +278,23 @@ be01 {x} (case1 record { y = y ; ay = ay ; x=fy = x=fy }) = subst (λ k → odef (* b) k) (sym x=fy) ( b∋f y (a∋gfImage ay)) be01 {x} (case2 ngfx) = proj1 ngfx + exfUC : (fUC ∩ b-fUC) =h= od∅ + exfUC = record { eq→ = be00 ; eq← = be01 } where + be00 : {x : Ordinal} → odef (fUC ∩ b-fUC) x → odef od∅ x + be00 {x} ⟪ uc , ⟪ ax , nuc ⟫ ⟫ = ⊥-elim ( nuc uc ) + be01 : {x : Ordinal} → odef od∅ x → odef (fUC ∩ b-fUC) x + be01 {x} lt = ⊥-elim ( ¬x<0 lt ) + nimg : {x : Ordinal } → (ax : odef (* a) x ) → ¬ (odef UC x) → IsImage b a gi x nimg {x} ax ncn with p∨¬p (IsImage b a gi x) ... | case1 img = img ... | case2 nimg = ⊥-elim ( ncn (a-g ax nimg ) ) - f-cong : {x y : Ordinal } → {ax : odef (* a) x} {ax1 : odef (* a) y} → x ≡ y → f x ≡ f y - f-cong {x} {x} {ax} {ax1} refl = refl + -- f-cong : {x y : Ordinal } → {ax : odef (* a) x} {ax1 : odef (* a) y} → x ≡ y → f x ≡ f y + -- f-cong {x} {x} {ax} {ax1} refl = refl - g-cong : {x y : Ordinal } → {bx : odef (* b) x} {bx1 : odef (* b) y} → x ≡ y → g x ≡ g y - g-cong {x} {x} {bx} {bx1} refl = refl + -- g-cong : {x y : Ordinal } → {bx : odef (* b) x} {bx1 : odef (* b) y} → x ≡ y → g x ≡ g y + -- g-cong {x} {x} {bx} {bx1} refl = refl g⁻¹ : {x : Ordinal } → (ax : odef (* a) x) → (nc0 : IsImage b a gi x ) → Ordinal g⁻¹ {x} ax record { y = y ; ay = ay ; x=fy = x=fy } = y @@ -314,7 +320,7 @@ (next-gf record { y = y ; ay = (a∋gfImage ay) ; x=fy = refl } ay ) ) where be113 : g (f y ) ≡ x be113 = begin - g (f y ) ≡⟨ g-cong (sym x=fy) ⟩ + g (f y ) ≡⟨ cong g (sym x=fy) ⟩ g y1 ≡⟨ sym (x=fy1) ⟩ x ∎ where open ≡-Reasoning @@ -323,7 +329,7 @@ → ¬ gfImage (g x ) cc10-case2 {x} bx nix (a-g ax ¬ib) = ¬ib record { y = _ ; ay = bx ; x=fy = refl } cc10-case2 {x} bx nix (next-gf record { y = y ; ay = ay ; x=fy = x=fy } gfy) - = nix record { y = _ ; ay = gfy ; x=fy = inject gi _ _ bx (b∋f y (a∋gfImage gfy)) (trans x=fy (g-cong (f-cong refl))) } + = nix record { y = _ ; ay = gfy ; x=fy = inject gi _ _ bx (b∋f y (a∋gfImage gfy)) (trans x=fy (cong g (cong f refl))) } fU1 : (x : Ordinal) → odef UC x → Ordinal fU1 x gfx = f x @@ -335,13 +341,21 @@ UC∋f⁻¹ {x} record { y = y ; ay = ay ; x=fy = x=fy } = ay fU-iso1 : {x : Ordinal } → (lt : odef fUC x) → fU1 (f⁻¹ x lt) (UC∋f⁻¹ lt) ≡ x - fU-iso1 {x} record { y = y ; ay = (a-g ax ¬ib) ; x=fy = x=fy } = trans (f-cong refl) (sym x=fy) - fU-iso1 {x} record { y = y ; ay = (next-gf record { y = y₁ ; ay = ay₁ ; x=fy = x=fy₁ } ay) ; x=fy = x=fy } = trans (f-cong refl) (sym x=fy) + fU-iso1 {x} record { y = y ; ay = (a-g ax ¬ib) ; x=fy = x=fy } = sym x=fy + fU-iso1 {x} record { y = y ; ay = (next-gf record { y = y₁ ; ay = ay₁ ; x=fy = x=fy₁ } ay) ; x=fy = x=fy } = sym x=fy fU-iso0 : {x : Ordinal } → (lt : odef UC x) → f⁻¹ (fU1 x lt) record { y = _ ; ay = lt ; x=fy = refl } ≡ x fU-iso0 {x} (a-g ax ¬ib) = refl fU-iso0 {x} (next-gf record { y = y ; ay = ay ; x=fy = x=fy } lt) = refl + f⁻¹-cong : (x y : Ordinal) → (isx : IsImage0 UC (* b) FA x) → (isy : IsImage0 UC (* b) FA y) → x ≡ y → f⁻¹ x isx ≡ f⁻¹ y isy + f⁻¹-cong x y isx@record { y = yx ; ay = ayx ; x=fy = x=fyx } isy@record { y = yy ; ay = ay ; x=fy = x=fy } eq = inject fi _ _ f01 f02 f00 where + f01 : odef (* a) (f⁻¹ x isx) + f01 = a∋gfImage (UC∋f⁻¹ isx) + f02 : odef (* a) (f⁻¹ y isy) + f02 = a∋gfImage (UC∋f⁻¹ isy) + f00 : f (f⁻¹ x isx) ≡ f (f⁻¹ y isy) + f00 = trans ( fU-iso1 isx) (trans eq (sym (fU-iso1 isy))) bi-UC : HODBijection UC fUC bi-UC = record { @@ -351,6 +365,8 @@ ; funA = λ x lt → UC∋f⁻¹ lt ; fiso→ = λ x lt → fU-iso1 lt ; fiso← = λ x lt → fU-iso0 lt + ; fcong→ = λ x y ax ay eq → cong f eq + ; fcong← = λ x y ax ay eq → f⁻¹-cong x y ax ay eq } b-FUC∋g⁻¹ : {x : Ordinal } → (lt : odef a-UC x )→ odef b-fUC (g⁻¹ (proj1 lt) (nimg (proj1 lt) (proj2 lt))) @@ -367,6 +383,13 @@ fUC-iso0 {x} lt with nimg (proj1 lt) (proj2 lt) ... | record { y = y ; ay = ay ; x=fy = x=fy } = sym x=fy + g⁻¹-cong : (x y : Ordinal) → (ax : odef a-UC x) ( ay : odef a-UC y) + → x ≡ y + → g⁻¹ (proj1 ax) (nimg (proj1 ax) (proj2 ax)) ≡ g⁻¹ (proj1 ay) (nimg (proj1 ay) (proj2 ay)) + g⁻¹-cong x y ax ay eq = inject gi _ _ ( b∋g⁻¹ (proj1 ax) (nimg (proj1 ax) (proj2 ax))) ( b∋g⁻¹ (proj1 ay) (nimg (proj1 ay) (proj2 ay))) g00 where + g00 : g (g⁻¹ (proj1 ax) (nimg (proj1 ax) (proj2 ax))) ≡ g (g⁻¹ (proj1 ay) (nimg (proj1 ay) (proj2 ay))) + g00 = trans (fUC-iso0 ax) ( trans eq (sym (fUC-iso0 ay))) + bi-fUC : HODBijection a-UC b-fUC bi-fUC = record { fun→ = λ x lt → g⁻¹ (proj1 lt) (nimg (proj1 lt) (proj2 lt)) @@ -375,6 +398,8 @@ ; funA = λ x lt → a-UC∋g lt ; fiso→ = λ x lt → fUC-iso1 lt ; fiso← = λ x lt → fUC-iso0 lt + ; fcong→ = λ x y ax ay eq → g⁻¹-cong x y ax ay eq + ; fcong← = λ x y ax ay eq → cong g eq } @@ -400,11 +425,11 @@ fun←cong : {P S : HOD} (b : HODBijection P S ) {x y : Ordinal } → {ax : odef S x} {ax1 : odef S y} → x ≡ y → fun← b x ax ≡ fun← b y ax1 -fun←cong {P} {S} b {x} {x} {ax} {ax1} refl = cong (λ k → fun← b x k) ? -- ( HE.≅-to-≡ ( ∋-irr {S} ax ax1 )) +fun←cong {P} {S} b {x} {x} {ax} {ax1} refl = fcong← b x x ax ax1 refl fun→cong : {P S : HOD} (b : HODBijection P S ) {x y : Ordinal } → {ax : odef P x} {ax1 : odef P y} → x ≡ y → fun→ b x ax ≡ fun→ b y ax1 -fun→cong {P} {S} b {x} {x} {ax} {ax1} refl = cong (λ k → fun→ b x k) ? -- ( HE.≅-to-≡ ( ∋-irr {P} ax ax1 )) +fun→cong {P} {S} b {x} {x} {ax} {ax1} refl = fcong→ b x x ax ax1 refl -- S