Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 824:8a06fe74721b
sp1 on supf1 px
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 18 Aug 2022 14:11:58 +0900 |
parents | 497b5db603e7 |
children | eec82adba99b |
files | src/zorn.agda |
diffstat | 1 files changed, 15 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Aug 18 12:22:45 2022 +0900 +++ b/src/zorn.agda Thu Aug 18 14:11:58 2022 +0900 @@ -672,8 +672,8 @@ supf1 : Ordinal → Ordinal supf1 z with trio< z px ... | tri< a ¬b ¬c = ZChain.supf zc z - ... | tri≈ ¬a b ¬c = ZChain.supf zc z - ... | tri> ¬a ¬b c = ZChain.supf zc px + ... | tri≈ ¬a b ¬c = sp1 -- ZChain.supf zc z + ... | tri> ¬a ¬b c = sp1 -- ZChain.supf zc px pchain1 : HOD pchain1 = UnionCF A f mf ay supf1 x @@ -715,17 +715,17 @@ (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1) order {s} {z2} s<u1 fc with trio< s px ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup s<u1 fc ) - ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup s<u1 fc ) + ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup s<u1 ? ) ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s (ordtrans s<u1 a) )) -- px o< s < u1 < px ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where + record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 ? } (init (subst (λ k → odef A k ) (sym eq1) ? ) ? ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 ) - fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc ) + fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ? -- ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf1 s) z2 → (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1) order {s} {z2} s<u1 fc with trio< s px - ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup s<u1 fc ) - ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup s<u1 fc ) + ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ? -- ( ChainP.order u1-is-sup s<u1 fc ) + ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ? -- ( ChainP.order u1-is-sup s<u1 fc ) ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b s<u1 ) )) -- px o< s < u1 = px ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with osuc-≡< (OrdTrans u1≤x z0≤px) ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 ) @@ -750,17 +750,17 @@ (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1) order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc )) - ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc )) + ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) ? )) ... | tri> ¬a ¬b px<s | record { eq = eq2 } = ⊥-elim ( o<¬≡ refl (ordtrans px<s (ordtrans s<u1 a) )) -- px o< s < u1 < px ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 ) - record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym eq1) (ChainP.supu=u u1-is-sup) } (init asp refl ) ⟫ where + record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym ? ) (ChainP.supu=u u1-is-sup) } (init ? ? ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 ) - fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) eq1 ( ChainP.fcy<sup u1-is-sup fc ) + fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) ? ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf0 s) z2 → (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1) order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s - ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc )) - ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc )) + ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) ?( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc )) + ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) ? ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) ? )) ... | tri> ¬a ¬b px<s | _ = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b s<u1 ) )) -- px o< s < u1 = px ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with trio< z0 px ... | tri< a ¬b ¬c with osuc-≡< (OrdTrans u1≤x (o<→≤ a) ) @@ -784,7 +784,7 @@ b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b sup=u {b} ab b≤x is-sup with trio< b px ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ o≤-refl (o<→≤ a) lt) } - ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ o≤-refl (o≤-refl0 b) lt) } + ... | tri≈ ¬a b ¬c = ? -- ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ o≤-refl (o≤-refl0 b) lt) } ... | tri> ¬a ¬b px<b = ⊥-elim (¬sp=x zcsup ) where zc30 : x ≡ b zc30 with osuc-≡< b≤x @@ -796,8 +796,8 @@ csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) csupf {b} b<x with trio< b px | inspect supf1 b ... | tri< a ¬b ¬c | _ = UnionCF⊆ o≤-refl (o<→≤ a) ( ZChain.csupf zc (o<→≤ a) ) - ... | tri≈ ¬a refl ¬c | _ = UnionCF⊆ o≤-refl o≤-refl ( ZChain.csupf zc o≤-refl ) - ... | tri> ¬a ¬b px<b | record { eq = eq1 } = UnionCF⊆ (o<→≤ px<b) o≤-refl ( ZChain.csupf zc o≤-refl ) + ... | tri≈ ¬a refl ¬c | _ = ? -- UnionCF⊆ o≤-refl o≤-refl ( ZChain.csupf zc o≤-refl ) + ... | tri> ¬a ¬b px<b | record { eq = eq1 } = ? -- UnionCF⊆ (o<→≤ px<b) o≤-refl ( ZChain.csupf zc o≤-refl ) sis : {z : Ordinal} (z<x : z o< x) → supf1 z ≡ & (SUP.sup (sup z<x)) sis {z} z<x with trio< z px ... | tri< a ¬b ¬c = ZChain.supf-is-sup zc a