Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1290:8bf6db0b82df
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 May 2023 15:50:25 +0900 |
parents | 95b62a08c3d0 |
children | 255b9708a308 |
files | src/OD.agda |
diffstat | 1 files changed, 16 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Mon May 29 09:29:28 2023 +0900 +++ b/src/OD.agda Mon May 29 15:50:25 2023 +0900 @@ -472,6 +472,12 @@ infinite-od : OD infinite-od = record { def = λ x → infinite-d x } +ux=osucx : {x : Ordinal} → infinite-d x → Union (* x , (* x , * x )) ≡ (* x , * x) -- looks like wrong +ux=osucx {.(Ordinals.o∅ O)} iφ = ? +ux=osucx {.(& (Union (* x , (* x , * x))))} (isuc {x} ix) = ==→o≡ record { eq→ = ? ; eq← = ? } where + lemma10 : Union (* x , (* x , * x )) ≡ (* x , * x) + lemma10 = ux=osucx ix + nat=Ord : {x : Ordinal} → infinite-d x → (Union (* x , (* x , * x ))) ≡ Ord (osuc x) nat=Ord {.(Ordinals.o∅ O)} iφ = ==→o≡ record { eq→ = lemma10 ; eq← = lemma11 } where lemma10 : {x : Ordinal} → Own (* o∅ , (* o∅ , * o∅)) x → x o< osuc o∅ @@ -505,13 +511,23 @@ ... | case2 z<ux = record { owner = _ ; ao = case1 refl ; ox = lemma17 } where lemma16 : (Union (* x , (* x , * x ))) ≡ Ord (osuc x) lemma16 = nat=Ord it + lemma22 : {z : Ordinal} → z o< osuc x → odef (Union (* x , (* x , * x ))) z + lemma22 {z} z<ox = subst (λ k → odef k z) (sym lemma16) z<ox lemma19 : odef (Union (* x , (* x , * x))) x lemma19 = record { owner = _ ; ao = case2 refl ; ox = subst₂ (λ j k → odef j k ) (sym *iso) &iso (case1 refl) } + lemma24 : x o< (& (Union (* x , (* x , * x)))) + lemma24 = ? + lemma25 : osuc x ≡ (& (Union (* x , (* x , * x)))) + lemma25 = ? + lemma23 : z o< osuc (& (Union (* x , (* x , * x)))) → z o< osuc x + lemma23 = ? lemma18 : z o< osuc x lemma18 = begin z <⟨ z<ux ⟩ & (Union (* x , (* x , * x))) ≤⟨ ? ⟩ x ∎ where open o≤-Reasoning O + lemma21 : odef (Ord (osuc x)) z + lemma21 = lemma18 lemma17 : odef (* (& (* (& (Union (* x , (* x , * x))))))) z lemma17 = subst (λ k → odef k z) (trans (sym lemma16) (sym (trans *iso *iso))) lemma18