Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1188:8cbc3918d875
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Feb 2023 11:16:32 +0900 |
parents | d996fe8dd116 |
children | 0201827b08ac |
files | src/Topology.agda src/Tychonoff.agda |
diffstat | 2 files changed, 35 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Feb 26 01:19:24 2023 +0900 +++ b/src/Topology.agda Sun Feb 26 11:16:32 2023 +0900 @@ -280,8 +280,9 @@ -- Compact data Finite-∪ (S : HOD) : Ordinal → Set n where - fin-e : {x : Ordinal } → * x ⊆ S → Finite-∪ S x - fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) + fin-e : Finite-∪ S o∅ + fin-i : {x : Ordinal } → * x ⊆ S → Finite-∪ S x + fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) record Compact {L : HOD} (top : Topology L) : Set n where field @@ -301,11 +302,11 @@ fip01 : {X : Ordinal } → (xcp : * X covers L) → (* o∅) covers L fip01 xcp = record { cover = λ Lx → ⊥-elim (fip02 Lx) ; P∋cover = λ Lx → ⊥-elim (fip02 Lx) ; isCover = λ Lx → ⊥-elim (fip02 Lx) } fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) o∅ - fip00 {X} xo xcp = fin-e ( λ {x} 0x → ⊥-elim (¬x<0 (subst (λ k → odef k x) o∅≡od∅ 0x) ) ) + fip00 {X} xo xcp = fin-e ... | tri> ¬a ¬b 0<L = record { finCover = finCover ; isCover = isCover1 ; isFinite = isFinite } where -- set of coset of X CX : {X : Ordinal} → * X ⊆ OS top → Ordinal - CX {X} ox = & ( Replace' (* X) (λ z xz → L \ z )) + CX {X} ox = & ( Replace (* X) (λ z → L \ z )) CCX : {X : Ordinal} → (os : * X ⊆ OS top) → * (CX os) ⊆ CS top CCX {X} os {x} ox with subst (λ k → odef k x) *iso ox ... | record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ fip05 , fip06 ⟫ where -- x ≡ & (L \ * z) @@ -329,11 +330,11 @@ -- record CFIP (X x : Ordinal) : Set n where field - is-CS : * x ⊆ Replace' (* X) (λ z xz → L \ z) + is-CS : * x ⊆ Replace (* X) (λ z → L \ z) sx : Subbase (* x) o∅ Cex : (X : Ordinal ) → HOD - Cex X = record { od = record { def = λ x → CFIP X x } ; odmax = osuc (& (Replace' (* X) (λ z xz → L \ z))) ; <odmax = fip05 } where - fip05 : {y : Ordinal} → CFIP X y → y o< osuc (& (Replace' (* X) (λ z xz → L \ z))) + Cex X = record { od = record { def = λ x → CFIP X x } ; odmax = osuc (& (Replace (* X) (λ z → L \ z))) ; <odmax = fip05 } where + fip05 : {y : Ordinal} → CFIP X y → y o< osuc (& (Replace (* X) (λ z → L \ z))) fip05 {y} cf = subst₂ (λ j k → j o< osuc k ) &iso refl ( ⊆→o≤ ( CFIP.is-CS cf ) ) fip00 : {X : Ordinal } → * X ⊆ OS top → * X covers L → ¬ ( Cex X =h= od∅ ) fip00 {X} ox oc cex=0 = ⊥-elim (fip09 fip25 fip20) where @@ -343,7 +344,7 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) ... | tri> ¬a ¬b c = c ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; sx = subst (λ k → Subbase (* (CX ox)) k) b sc } )) where - fip10 : * (CX ox) ⊆ Replace' (* X) (λ z xz → L \ z) + fip10 : * (CX ox) ⊆ Replace (* X) (λ z → L \ z) fip10 {w} cw = subst (λ k → odef k w) *iso cw -- we have some intersection because L is not empty (if we have an element of L, we don't need choice) fip26 : odef (* (CX ox)) (& (L \ * ( cover oc ( ODC.x∋minimal O L (0<P→ne 0<L) ) ))) @@ -366,13 +367,13 @@ -- -- this defines finite cover finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal - finCover {X} ox oc = & ( Replace' (* (cex ox oc)) (λ z xz → L \ z )) + finCover {X} ox oc = & ( Replace (* (cex ox oc)) (λ z → L \ z )) -- create Finite-∪ from cex isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp) isFinite {X} xo xcp = fip30 (cex xo xcp) o∅ (CFIP.is-CS (CXfip xo xcp)) (CFIP.sx (CXfip xo xcp)) where - fip30 : ( x y : Ordinal ) → * x ⊆ Replace' (* X) (λ z xz → L \ z) → Subbase (* x) y → Finite-∪ (* X) (& (Replace' (* x) (λ z xz → L \ z ))) + fip30 : ( x y : Ordinal ) → * x ⊆ Replace (* X) (λ z → L \ z) → Subbase (* x) y → Finite-∪ (* X) (& (Replace (* x) (λ z → L \ z ))) fip30 x y x⊆cs (gi sb) = fip31 where - fip32 : Replace' (* x) (λ z xz → L \ z) ⊆ * X -- x⊆cs :* x ⊆ Replace' (* X) (λ z₁ xz → L \ z₁) , x=ψz : w ≡ & (L \ * z) , odef (* x) z + fip32 : Replace (* x) (λ z → L \ z) ⊆ * X fip32 {w} record { z = z ; az = xz ; x=ψz = x=ψz } with x⊆cs xz ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where fip34 : * z1 ⊆ L @@ -385,12 +386,21 @@ & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩ & (L \ * z) ≡⟨ sym x=ψz ⟩ w ∎ where open ≡-Reasoning - fip31 : Finite-∪ (* X) (& (Replace' (* x) (λ z xz → L \ z))) - fip31 = fin-e (subst (λ k → k ⊆ * X ) (sym *iso) fip32 ) + -- x⊆cs :* x ⊆ Replace (* X) (λ z₁ xz → L \ z₁) , x=ψz : w ≡ & (L \ * z) , odef (* x) z + fp38 : Subbase (* x) y + fp38 = gi sb + fp35 : odef (* x) y + fp35 = sb + fp36 : odef (Replace (* X) (λ z → L \ z)) y + fp36 = x⊆cs sb + fp37 : odef (* X) (& (L \ * y)) + fp37 = ? + fip31 : Finite-∪ (* X) (& (Replace (* x) (λ z → L \ z))) + fip31 = fin-i (subst (λ k → k ⊆ * X ) (sym *iso) fip32 ) fip30 x yz x⊆cs (g∩ {y} {z} sy sz) = fip35 where - fip35 : Finite-∪ (* X) (& (Replace' (* x) (λ z₁ xz → L \ z₁))) + fip35 : Finite-∪ (* X) (& (Replace (* x) (λ z₁ → L \ z₁))) fip35 = subst (λ k → Finite-∪ (* X) k) - (cong (&) (subst (λ k → (k ∪ k ) ≡ (Replace' (* x) (λ z₁ xz → L \ z₁)) ) (sym *iso) x∪x≡x )) ( fin-∪ (fip30 _ _ x⊆cs sy) (fip30 _ _ x⊆cs sz) ) + (cong (&) (subst (λ k → (k ∪ k ) ≡ (Replace (* x) (λ z₁ → L \ z₁)) ) (sym *iso) x∪x≡x )) ( fin-∪ (fip30 _ _ x⊆cs sy) (fip30 _ _ x⊆cs sz) ) -- is also a cover isCover1 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → * (finCover xo xcp) covers L isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L) @@ -413,13 +423,13 @@ fip47 {x} Lab with fip45 {L} {a} {b} Lab ... | case1 La = isCover ca La ... | case2 Lb = isCover cb Lb - fip40 : ( x y : Ordinal ) → * x ⊆ Replace' (* X) (λ z xz → L \ z) → Subbase (* x) y - → (Replace' (* x) (λ z xz → L \ z )) covers (L \ * y ) - fip40 x .(& (* _ ∩ * _)) x⊆r (g∩ {a} {b} sa sb) = subst (λ k → (Replace' (* x) (λ z xz → L \ z)) covers ( L \ k ) ) (sym *iso) + fip40 : ( x y : Ordinal ) → * x ⊆ Replace (* X) (λ z → L \ z) → Subbase (* x) y + → (Replace (* x) (λ z → L \ z )) covers (L \ * y ) + fip40 x .(& (* _ ∩ * _)) x⊆r (g∩ {a} {b} sa sb) = subst (λ k → (Replace (* x) (λ z → L \ z)) covers ( L \ k ) ) (sym *iso) ( fip43 {_} {L} {* a} {* b} fip41 fip42 ) where - fip41 : Replace' (* x) (λ z xz → L \ z) covers (L \ * a) + fip41 : Replace (* x) (λ z → L \ z) covers (L \ * a) fip41 = fip40 x a x⊆r sa - fip42 : Replace' (* x) (λ z xz → L \ z) covers (L \ * b) + fip42 : Replace (* x) (λ z → L \ z) covers (L \ * b) fip42 = fip40 x b x⊆r sb fip40 x y x⊆r (gi sb) with x⊆r sb ... | record { z = z ; az = az ; x=ψz = x=ψz } = record { cover = fip51 ; P∋cover = fip53 ; isCover = fip50 }where @@ -435,7 +445,7 @@ L \ ( L \ * z ) ≡⟨ cong (λ k → L \ k) (sym *iso) ⟩ L \ * ( & ( L \ * z )) ≡⟨ cong (λ k → L \ * k) (sym x=ψz) ⟩ L \ * y ∎ where open ≡-Reasoning - fip53 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (Replace' (* x) (λ z₁ xz → L \ z₁)) z + fip53 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (Replace (* x) (λ z₁ → L \ z₁)) z fip53 {w} Lyw = record { z = _ ; az = sb ; x=ψz = fip54 } where fip54 : z ≡ & ( L \ * y ) fip54 = begin @@ -455,7 +465,7 @@ ... | tri> ¬a ¬b 0<L = record { limit = limit ; is-limit = fip00 } where -- set of coset of X OX : {X : Ordinal} → * X ⊆ CS top → Ordinal - OX {X} ox = & ( Replace' (* X) (λ z xz → L \ z )) + OX {X} ox = & ( Replace (* X) (λ z → L \ z )) OOX : {X : Ordinal} → (cs : * X ⊆ CS top) → * (OX cs) ⊆ OS top OOX {X} cs {x} ox with subst (λ k → odef k x) *iso ox ... | record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (OS top) k) (sym x=ψz) ( P\CS=OS top (cs comp01)) where @@ -477,7 +487,8 @@ fp01 : Ordinal fp01 = Compact.finCover compact (OOX CX) cov fp02 : (t : Ordinal) → Finite-∪ (* (OX CX)) t → Subbase (* X) (& ( L \ * t ) ) - fp02 t (fin-e t⊆OX ) = gi fp03 where + fp02 t fin-e = gi ? + fp02 t (fin-i tx ) = gi fp03 where fp03 : odef (* X) (& (L \ * t)) fp03 = ? fp02 t (fin-∪ {tx} {ty} x y ) = subst (λ k → Subbase (* X) k ) fp04 ( g∩ (fp02 tx x) (fp02 ty y ) ) where
--- a/src/Tychonoff.agda Sun Feb 26 01:19:24 2023 +0900 +++ b/src/Tychonoff.agda Sun Feb 26 11:16:32 2023 +0900 @@ -156,7 +156,7 @@ -- take closure of given filter elements -- CF : HOD - CF = Replace' (filter F) (λ x fx → Cl TP x ) + CF = Replace (filter F) (λ x → Cl TP x ) CF⊆CS : CF ⊆ CS TP CF⊆CS {x} record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (CS TP) k) (sym x=ψz) (CS∋Cl TP (* z)) --