Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1051:8d25e368e26f
... bad
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Dec 2022 11:10:41 +0900 |
parents | 323e6e6622a2 |
children | 0b6cee971cba |
files | src/zorn.agda |
diffstat | 1 files changed, 53 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Dec 08 07:55:31 2022 +0900 +++ b/src/zorn.agda Fri Dec 09 11:10:41 2022 +0900 @@ -1108,28 +1108,6 @@ u≤px : u o≤ px u≤px = ordtrans u<x z≤px - order : {a b : Ordinal} {w : Ordinal} → - b o≤ x → supf1 a o< supf1 b → FClosure A f (supf1 a) w → w ≤ supf1 b - order {a} {b} {w} b≤x sa<sb fc = z20 where - a<b : a o< b - a<b = supf-inject0 supf1-mono sa<sb - z20 : w ≤ supf1 b - z20 with trio< b px - ... | tri< b<px ¬b ¬c = ZChain.order zc (o<→≤ b<px) (subst (λ k → k o< supf0 b) (sf1=sf0 (o<→≤ (ordtrans a<b b<px))) sa<sb) - (fcup fc (o<→≤ (ordtrans a<b b<px))) - ... | tri≈ ¬a b=px ¬c = IsMinSUP.x≤sup (ZChain.is-minsup zc (o≤-refl0 b=px)) z26 where - sa<b : supf1 a o< b -- px - sa<b = ? - z26 : odef ( UnionCF A f ay supf0 b ) w - z26 = ? - z27 : odef ( UnionCF A f ay supf1 b ) w - z27 = cfcs a<b b≤x sa<b fc - ... | tri> ¬a ¬b px<b = MinSUP.x≤sup sup1 (zc11 ( chain-mono f mf ay supf1 supf1-mono b≤x (cfcs a<b b≤x sa<b fc))) where - sa<b : supf1 a o< b -- b ≡ x - sa<b = ? - - -- - -- sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSUP A (UnionCF A f ay supf1 b) b ∧ (¬ HasPrev A (UnionCF A f ay supf1 b) f b ) → supf1 b ≡ b sup=u {b} ab b≤x is-sup with trio< b px @@ -1200,6 +1178,59 @@ zc40 = subst (λ k → f (supf0 px) ≤ k ) (sym zc39) ( MinSUP.x≤sup sup1 (case2 ⟪ fsuc _ (init (ZChain.asupf zc) refl) , subst (λ k → k o< x) (sym zc37) px<x ⟫ )) + order : {a b : Ordinal} {w : Ordinal} → + b o≤ x → supf1 a o< supf1 b → FClosure A f (supf1 a) w → w ≤ supf1 b + order {a} {b} {w} b≤x sa<sb fc = z20 where + a<b : a o< b + a<b = supf-inject0 supf1-mono sa<sb + a≤px : a o≤ px + a≤px with trio< a px + ... | tri< a ¬b ¬c = o<→≤ a + ... | tri≈ ¬a b ¬c = o≤-refl0 b + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → a o< k) (sym (Oprev.oprev=x op)) + ( ordtrans<-≤ a<b b≤x) ⟫ ) -- px o< a o< b o≤ x + spx<x : supf0 px o< x + spx<x = ? + spx<=sb : supf0 px ≤ sp1 + spx<=sb = MinSUP.x≤sup sup1 (case2 ⟪ init (ZChain.asupf zc) refl , ? ⟫ ) + sa<<sb : supf1 a << supf1 b + sa<<sb with osuc-≡< b≤x + ... | case2 b<x = subst₂ (λ j k → j << k ) (sym (sf1=sf0 ?)) (sym (sf1=sf0 ?)) ( ZChain.supf-mono< zc (zc-b<x _ b<x) + (subst₂ (λ j k → j o< k) (sf1=sf0 ?) (sf1=sf0 ?) sa<sb )) + ... | case1 b=x with osuc-≡< ( supf1-mono a≤px ) -- supf1 a ≤ supf1 px << sp1 + ... | case2 sa<spx = subst₂ (λ j k → j << k ) (sym (sf1=sf0 ?)) (sym (sf1=sp1 ?)) + ( ftrans<-≤ ( ZChain.supf-mono< zc o≤-refl (subst₂ (λ j k → j o< k) (sf1=sf0 ?) (sf1=sf0 ?) sa<spx)) spx<=sb ) + ... | case1 sa=spx with spx<=sb + ... | case2 lt = subst₂ (λ j k → j << k ) ? ? lt + ... | case1 eq = ? + -- supf1 a o≤ x + -- x o< supf1 a o< supf1 b -> UnionCF px ⊆ UnionCF a → supf0 px ≡ supf0 a → ⊥ + -- a o≤ supf1 a + sa<x : supf1 a o< x -- supf1 a o< supf1 x ≡ sp1 ( supf of fc (supf0 px) ∧ (supf0 px o< x) + sa<x with x<y∨y≤x (supf1 a) x + ... | case1 lt = lt + ... | case2 x≤sa = ⊥-elim ( <<-irr z27 sa<<sb ) where + z27 : supf1 b ≤ supf1 a + z27 = subst (λ k → supf1 b ≤ k ) ? (IsMinSUP.x≤sup (is-minsup ? ) ? ) + ssa=sa : supf1 a ≡ supf1 (supf1 a) -- supf0 a o≤ px + ssa=sa = sym ( sup=u ? ? ? ) + sa<b : supf1 a o< b -- supf1 (supf1 a) ≡ supf1 a o< supf1 b → inject supf1 a o< b + sa<b = supf-inject0 supf1-mono (subst (λ k → k o< supf1 b ) ? sa<sb ) + z20 : w ≤ supf1 b + z20 with trio< b px + ... | tri< b<px ¬b ¬c = ZChain.order zc (o<→≤ b<px) (subst (λ k → k o< supf0 b) (sf1=sf0 (o<→≤ (ordtrans a<b b<px))) sa<sb) + (fcup fc (o<→≤ (ordtrans a<b b<px))) + ... | tri≈ ¬a b=px ¬c = IsMinSUP.x≤sup (ZChain.is-minsup zc (o≤-refl0 b=px)) z26 where + -- sa<b : supf1 a o< b -- px + -- sa<b = ? + z26 : odef ( UnionCF A f ay supf0 b ) w + z26 with cfcs a<b b≤x sa<b fc + ... | ⟪ ua , ch-init fc ⟫ = ⟪ ua , ch-init fc ⟫ + ... | ⟪ ua , ch-is-sup u u<x su=u fc ⟫ = ⟪ ua , ch-is-sup u ? ? ? ⟫ + ... | tri> ¬a ¬b px<b = MinSUP.x≤sup sup1 (zc11 ( chain-mono f mf ay supf1 supf1-mono b≤x (cfcs a<b b≤x sa<b fc))) + -- sa<b : supf1 a o< b -- b ≡ x + -- sa<b = ? + ... | no lim with trio< x o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) ... | tri≈ ¬a b ¬c = record { supf = ? ; sup=u = ? ; asupf = ? ; supf-mono = ? ; order = ?