Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 429:8d8149bcd4d1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 19 Dec 2020 21:58:32 +0900 |
parents | 94392feeebc5 |
children | 28c7be8f252c |
files | Topology.agda |
diffstat | 1 files changed, 26 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/Topology.agda Sat Dec 19 21:43:21 2020 +0900 +++ b/Topology.agda Sat Dec 19 21:58:32 2020 +0900 @@ -69,23 +69,41 @@ fin-∩e : {x : HOD} → S ∋ x → Finite-∩ S x fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y) +record FIP ( L P : HOD ) : Set (suc n) where + field + fipS⊆PL : P ⊆ Power L + fip≠φ : { x : HOD } → Finite-∩ P x → ¬ ( x ≡ od∅ ) + +-- Compact + data Finite-∪ (S : HOD) : HOD → Set (suc n) where fin-∪e : {x : HOD} → S ∋ x → Finite-∪ S x fin-∪ : {x y : HOD} → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (x ∪ y) -record FIP ( L : HOD ) : Set (suc n) where - field - fipS : HOD - fipS⊆PL : fipS ⊆ Power L - fip≠φ : { x : HOD } → Finite-∩ fipS x → ¬ ( x ≡ od∅ ) - --- Compact - record Compact ( L P : HOD ) : Set (suc n) where field finCover : {X y : HOD} → X covers P → P ∋ y → HOD isFinCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → finCover xp P∋y ∋ y isFininiteCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → Finite-∪ X (finCover xp P∋y ) +-- FIP is Compact + +FIP→Compact : {L P : HOD} → Tolopogy L → FIP L P → Compact L P +FIP→Compact = ? + +Compact→FIP : {L P : HOD} → Tolopogy L → Compact L P → FIP L P +Compact→FIP = ? -- Product Topology + +_Top⊗_ : {P Q : HOD} → Topology P → Tolopogy Q → Topology ( P ⊗ Q ) +_Top⊗_ = ? + +-- existence of Ultra Filter + +-- Ultra Filter has limit point + +-- FIP is UFL + +-- Product of UFL has limit point (Tychonoff) +