Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1180:8e04e3cad0b5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 23 Feb 2023 18:44:47 +0900 |
parents | f4cd937759fc |
children | cf25490dd112 |
files | src/OD.agda src/Topology.agda |
diffstat | 2 files changed, 25 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Thu Feb 23 12:48:00 2023 +0800 +++ b/src/OD.agda Thu Feb 23 18:44:47 2023 +0900 @@ -400,6 +400,10 @@ power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t⊆A z xz = subst (λ k → odef A k ) &iso ( t⊆A (subst₂ (λ j k → odef j k) *iso (sym &iso) xz )) +Intersection : (X : HOD ) → HOD -- ∩ X +Intersection X = record { od = record { def = λ x → (x o< & X ) ∧ ( {y : Ordinal} → odef X y → odef (* y) x )} ; odmax = & X ; <odmax = λ lt → proj1 lt } + + -- {_} : ZFSet → ZFSet -- { x } = ( x , x ) -- better to use (x , x) directly
--- a/src/Topology.agda Thu Feb 23 12:48:00 2023 +0800 +++ b/src/Topology.agda Thu Feb 23 18:44:47 2023 +0900 @@ -446,8 +446,10 @@ fip50 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (* z) w fip50 {w} Lyw = subst (λ k → odef k w ) (sym fip56) Lyw +open _==_ + Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top → FIP top -Compact→FIP {L} top fip with trio< (& L) o∅ +Compact→FIP {L} top compact with trio< (& L) o∅ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) ... | tri≈ ¬a b ¬c = record { limit = ? ; is-limit = ? } ... | tri> ¬a ¬b 0<L = record { limit = limit ; is-limit = fip00 } where @@ -463,35 +465,31 @@ -- if all finite intersection of (OX X) contains something, -- there is no finite cover. From Compactness, (OX X) is not a cover of L ( contraposition of Compact) -- it means there is a limit - -- - Intersection : (X : Ordinal ) → o∅ o< X → HOD -- ∩ X - Intersection X 0<X = record { od = record { def = λ x → {y : Ordinal} → odef (* X) y → odef (* y) x } ; odmax = osuc X ; <odmax = i00 } where - i01 : HOD - i01 = ODC.minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X ) ) - i02 : odef (* X) (& i01) - i02 = ODC.x∋minimal O (* X) (0<P→ne (subst (λ k → o∅ o< k) (sym &iso) 0<X ) ) - i00 : {x : Ordinal} → ({y : Ordinal} → odef (* X) y → odef (* y) x) → x o< osuc X - i00 {x} xy = begin - x ≡⟨ sym &iso ⟩ - & (* x) <⟨ c<→o< (subst₂ (λ j k → odef j k ) *iso (sym &iso) i03) ⟩ - & i01 <⟨ c<→o< i02 ⟩ - & (* X) ≡⟨ &iso ⟩ - X ∎ where - open o≤-Reasoning O - i03 : odef (* (& i01)) x - i03 = xy i02 has-intersection : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) - → ¬ ( Intersection X ? =h= od∅ ) - has-intersection {X} CX fip i=0 = ? where + → o∅ o< X → ¬ ( Intersection (* X) =h= od∅ ) + has-intersection {X} CX fip 0<X i=0 = no-cover record { cover = cover1 ; P∋cover = ? ; isCover = ? } where + cover1 : {x : Ordinal} → odef L x → Ordinal + cover1 {x} Lx = ? no-cover : ¬ ( (* (OX CX)) covers L ) - no-cover = ? + no-cover cov = ⊥-elim ( o<¬≡ ? (fip ? ?) ) where + fp01 : Ordinal + fp01 = Compact.finCover compact (OOX CX) cov + fp02 : Subbase ? ? + fp02 = ? limit : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) → Ordinal - limit = ? + limit {X} CX fip with trio< X o∅ + ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) + ... | tri≈ ¬a b ¬c = o∅ + ... | tri> ¬a ¬b c = & (ODC.minimal O (Intersection (* X)) ( has-intersection CX fip c)) fip00 : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x) {x : Ordinal} → odef (* X) x → odef (* x) (limit CX fip ) - fip00 = ? + fip00 {X} CX fip {x} Xx with trio< X o∅ + ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) + ... | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (sym b) (subst (λ k → o∅ o< k) &iso (∈∅< Xx) ) ) + ... | tri> ¬a ¬b c with ODC.x∋minimal O (Intersection (* X)) ( has-intersection CX fip c ) + ... | ⟪ 0<m , intersect ⟫ = intersect Xx open Filter