Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 661:9142e834c4c6
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 03 Jul 2022 06:10:51 +0900 |
parents | db9477c80dce |
children | a45ec34b9fa7 |
files | src/zorn.agda |
diffstat | 1 files changed, 34 insertions(+), 61 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jul 02 07:52:05 2022 +0900 +++ b/src/zorn.agda Sun Jul 03 06:10:51 2022 +0900 @@ -239,12 +239,12 @@ A∋maximal : A ∋ sup x<sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total, use positive -record UChain (chain : Ordinal → HOD) (x : Ordinal) (z : Ordinal) : Set n where +record UChain (x : Ordinal) (chain : (z : Ordinal ) → z o< x → HOD) (z : Ordinal) : Set n where -- Union of supf z which o< x field u : Ordinal u<x : u o< x - chain∋z : odef (chain u) z + chain∋z : odef (chain u u<x) z ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) @@ -259,37 +259,19 @@ ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f ay x chain ch-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) - → ( chainf : Ordinal → HOD ) → ( lt : ( z : Ordinal ) → z o< x → Chain A f ay z ( chainf z )) + → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) → Chain A f ay x - record { od = record { def = λ z → odef A z ∧ (UChain chainf x z ∨ FClosure A f y z ) } - ; odmax = & A ; <odmax = λ {y} sy → {!!} } - -Chain-uniq : (A : HOD ) ( f : Ordinal → Ordinal ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal) - → ( Ordinal → HOD ) → Set (Level.suc n) -Chain-uniq A f {y} ay x chain with Oprev-p x -... | yes op = st1 where - px = Oprev.oprev op - st1 : Set (Level.suc n) - st1 with ODC.∋-p O A (* x) - ... | no noax = chain x ≡ chain px - ... | yes ax with ODC.p∨¬p O ( HasPrev A (chain px) ax f ) - ... | case1 pr = chain x ≡ chain px - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (chain px) ax ) - ... | case1 is-sup = chain x ≡ schain where - schain : HOD - schain = record { od = record { def = λ x → odef (chain px) x ∨ (FClosure A f y x) } ; odmax = & A ; <odmax = λ {y} sy → {!!} } - ... | case2 ¬x=sup = chain x ≡ chain px -... | no ¬ox = chain x ≡ record { od = record { def = λ z → odef A z ∧ ( UChain chain x z ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = λ {y} sy → {!!} } + record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f y z ) } + ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where field - chain : Ordinal → HOD - chain-mono : {x : Ordinal} → x o≤ z → chain x ⊆' chain z - chain-uniq : Chain-uniq A f ay z chain + chain : HOD + chain-uniq : Chain A f ay z chain -record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where +record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : (x : Ordinal) → ZChain1 A f ay x ) ( z : Ordinal ) : Set (Level.suc n) where chain : HOD - chain = ZChain1.chain zc0 z + chain = ZChain1.chain (zc0 z) field chain⊆A : chain ⊆' A chain∋init : odef chain init @@ -363,7 +345,7 @@ cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ - sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f as0 (& A) ) (zc : ZChain A f as0 zc0 (& A) ) + sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : (x : Ordinal) → ZChain1 A f as0 x ) (zc : ZChain A f as0 zc0 (& A) ) (total : IsTotalOrderSet (ZChain.chain zc) ) → SUP A (ZChain.chain zc) sp0 f mf zc0 zc total = supP (ZChain.chain zc) (ZChain.chain⊆A zc) total zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P @@ -372,7 +354,7 @@ --- --- the maximum chain has fix point of any ≤-monotonic function --- - fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f as0 (& A)) (zc : ZChain A f as0 zc0 (& A) ) + fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : (x : Ordinal) → ZChain1 A f as0 x) (zc : ZChain A f as0 zc0 (& A) ) → (total : IsTotalOrderSet (ZChain.chain zc) ) → f (& (SUP.sup (sp0 f mf zc0 zc total ))) ≡ & (SUP.sup (sp0 f mf zc0 zc total)) fixpoint f mf zc0 zc total = z14 where @@ -421,7 +403,7 @@ -- ZChain forces fix point on any ≤-monotonic function (fixpoint) -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain -- - z04 : (nmx : ¬ Maximal A ) → (zc0 : ZChain1 A (cf nmx) as0 (& A)) (zc : ZChain A (cf nmx) as0 zc0 (& A)) → IsTotalOrderSet (ZChain.chain zc) → ⊥ + z04 : (nmx : ¬ Maximal A ) → (zc0 : (x : Ordinal) → ZChain1 A (cf nmx) as0 x) (zc : ZChain A (cf nmx) as0 zc0 (& A)) → IsTotalOrderSet (ZChain.chain zc) → ⊥ z04 nmx zc0 zc total = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1 )))) (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc0 zc total ))) -- x ≡ f x ̄ @@ -444,42 +426,33 @@ px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc sc : ZChain1 A f ay px sc = prev px px<x - no-ext : ZChain1 A f ay x - no-ext = record { chain = s01 ; chain-mono = ? ; chain-uniq = s02 } where - s01 : Ordinal → HOD - s01 z with trio< z x - ... | tri< a ¬b ¬c = chain (prev z a ) z - ... | tri≈ ¬a b ¬c = chain (prev px px<x ) px - ... | tri> ¬a ¬b c = chain (prev px px<x ) px - s02 : Chain-uniq A f ay x s01 - s02 with trio< x x - ... | tri< a ¬b ¬c = ? - ... | tri≈ ¬a refl ¬c = ? - ... | tri> ¬a ¬b c = ? sc4 : ZChain1 A f ay x sc4 with ODC.∋-p O A (* x) - ... | no noax = {!!} - ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain1.chain sc x) ax f ) + ... | no noax = record { chain = ? ; chain-uniq = ? } + ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain1.chain sc ) ax f ) ... | case1 pr = {!!} - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc x) ax ) + ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc ) ax ) ... | case1 is-sup = {!!} where -- A∋sc -- x is a sup of zc - sup0 : SUP A (ZChain1.chain sc x ) + sup0 : SUP A (ZChain1.chain sc ) sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where - x21 : {y : HOD} → (ZChain1.chain sc x) ∋ y → (y ≡ * x) ∨ (y < * x) + x21 : {y : HOD} → (ZChain1.chain sc ) ∋ y → (y ≡ * x) ∨ (y < * x) x21 {y} zy with IsSup.x<sup is-sup zy ... | case1 y=x = case1 (subst₂ (λ j k → j ≡ * k ) *iso &iso ( cong (*) y=x) ) ... | case2 y<x = case2 (subst₂ (λ j k → j < * k ) *iso &iso y<x ) sp : HOD sp = SUP.sup sup0 schain : HOD - schain = record { od = record { def = λ x → odef (ZChain1.chain sc x) x ∨ (FClosure A f (& sp) x) } ; odmax = & A ; <odmax = λ {y} sy → {!!} } + schain = record { od = record { def = λ x → odef A x ∧ ( odef (ZChain1.chain sc ) x ∨ (FClosure A f (& sp) x)) } + ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } ... | case2 ¬x=sup = {!!} ... | no ¬ox = ? where + supf : (z : Ordinal) → z o< x → HOD + supf = ? sc5 : HOD - sc5 = record { od = record { def = λ z → odef A z ∧ (UChain ? x z ∨ FClosure A f y z)} ; odmax = & A ; <odmax = λ {y} sy → {!!} } + sc5 = record { od = record { def = λ z → odef A z ∧ (UChain x supf z ∨ FClosure A f y z)} ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } - ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : ZChain1 A f ay (& A)) + ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : (x : Ordinal) → ZChain1 A f ay x) → ((z : Ordinal) → z o< x → ZChain A f ay zc0 z) → ZChain A f ay zc0 x ind f mf {y} ay x zc0 prev with Oprev-p x ... | yes op = zc4 where @@ -488,7 +461,7 @@ -- px = Oprev.oprev op supf : Ordinal → HOD - supf = ZChain1.chain zc0 + supf x = ZChain1.chain (zc0 x) zc : ZChain A f ay zc0 (Oprev.oprev op) zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px @@ -656,11 +629,11 @@ ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = ? ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case supf : Ordinal → HOD - supf = ZChain1.chain zc0 - uzc : {z : Ordinal} → (u : UChain supf x z) → ZChain A f ay zc0 (UChain.u u) + supf x = ZChain1.chain (zc0 x) + uzc : {z : Ordinal} → (u : UChain x ? z) → ZChain A f ay zc0 (UChain.u u) uzc {z} u = prev (UChain.u u) (UChain.u<x u) Uz : HOD - Uz = record { od = record { def = λ z → odef A z ∧ ( UChain supf z x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = ? } + Uz = record { od = record { def = λ z → odef A z ∧ ( UChain z ? x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = ? } u-next : {z : Ordinal} → odef Uz z → odef Uz (f z) u-next {z} = ? -- (case1 u) = case1 record { u = UChain.u u ; u<x = UChain.u<x u ; chain∋z = ZChain.f-next ( uzc u ) (UChain.chain∋z u) } @@ -673,7 +646,7 @@ u-chain∋init = ? -- case2 ( init ay ) supf0 : Ordinal → HOD supf0 z with trio< z x - ... | tri< a ¬b ¬c = ZChain1.chain zc0 z + ... | tri< a ¬b ¬c = ZChain1.chain (zc0 z) ... | tri≈ ¬a b ¬c = Uz ... | tri> ¬a ¬b c = Uz u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w @@ -685,9 +658,9 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) ... | tri≈ ¬a b ¬c = refl ... | tri> ¬a ¬b c = refl - seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain zc0 b ≡ supf0 b + seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain (zc0 b) ≡ supf0 b seq<x {b} b<x with trio< b x - ... | tri< a ¬b ¬c = cong (λ k → ZChain1.chain zc0 b) o<-irr -- b<x ≡ a + ... | tri< a ¬b ¬c = cong (λ k → ZChain1.chain (zc0 b)) o<-irr -- b<x ≡ a ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y @@ -695,8 +668,8 @@ ... | case1 z=y = subst (λ k → x o< k ) z=y x<z ... | case2 z<y = ordtrans x<z z<y - SZ0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain1 A f ay (& A) - SZ0 f mf ay = TransFinite {λ z → ZChain1 A f ay z} (sind f mf ay ) (& A) + SZ0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ZChain1 A f ay x + SZ0 f mf ay x = TransFinite {λ z → ZChain1 A f ay z} (sind f mf ay ) x SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f ay (SZ0 f mf ay) (& A) SZ f mf {y} ay = TransFinite {λ z → ZChain A f ay (SZ0 f mf ay) z } (λ x → ind f mf ay x (SZ0 f mf ay) ) (& A) @@ -717,8 +690,8 @@ nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ - zc0 : ZChain1 A (cf nmx) as0 (& A) - zc0 = TransFinite {λ z → ZChain1 A (cf nmx) as0 z} (sind (cf nmx) (cf-is-≤-monotonic nmx) as0) (& A) + zc0 : (x : Ordinal) → ZChain1 A (cf nmx) as0 x + zc0 x = TransFinite {λ z → ZChain1 A (cf nmx) as0 z} (sind (cf nmx) (cf-is-≤-monotonic nmx) as0) x zorn04 : ZChain A (cf nmx) as0 zc0 (& A) zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) total : IsTotalOrderSet (ZChain.chain zorn04)