Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 540:920a5c0568c3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 24 Apr 2022 18:59:31 +0900 |
parents | adbac273d2a6 |
children | f3e2cbd07e7c |
files | src/zorn.agda |
diffstat | 1 files changed, 29 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sun Apr 24 16:33:21 2022 +0900 +++ b/src/zorn.agda Sun Apr 24 18:59:31 2022 +0900 @@ -301,6 +301,11 @@ (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1))) where sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc c = & (SUP.sup sp1) + -- Union of ZFChain + UZFChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (B : Ordinal) + → ( (y : Ordinal) → y o< B → ZChain A sa f mf supO y ) → HOD + UZFChain f mf B prev = record { od = record { def = λ y → odef A y ∧ (y o< B) ∧ ( (y<b : y o< B) → odef (ZChain.chain (prev y y<b)) y) } + ; odmax = & A ; <odmax = z07 } -- ZChain is not compatible with the SUP condition ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A sa f mf supO y ) → ZChain A sa f mf supO x @@ -323,12 +328,30 @@ -- x has no y which y < x zc4 : ZChain A sa f mf supO x zc4 with ODC.p∨¬p O ( Prev< A ax f ) - ... | case1 y = record { chain = zc5 ; chain⊆A = record { incl = λ lt → proj1 lt } - ; f-total = {!!} ; f-next = {!!} ; chain∋x = ⟪ subst (λ k → odef A (& k)) *iso sa , case1 (ZChain.chain∋x zc0) ⟫ ; is-max = {!!} } where - zc5 : HOD - zc5 = record { od = record { def = λ z → odef A z ∧ (odef (ZChain.chain zc0) z ∨ (z ≡ x) ∨ (z ≡ f x)) } ; odmax = & A ; <odmax = z07 } - ... | case2 not = {!!} - -- zc4 = record { chain = {!!} ; chain⊆A = {!!} ; f-total = {!!} ; f-next = {!!} ; chain∋x = {!!} ; is-max = {!!} } + ... | case1 y = zc7 where + zc7 : ZChain A sa f mf supO x + zc7 with ODC.∋-p O (ZChain.chain zc0) (* ( f x ) ) + ... | yes y = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ; chain∋x = {!!} ; is-max = {!!} } -- no extention + ... | no not = record { chain = zc5 ; chain⊆A = ⊆-zc5 + ; f-total = zc6 ; f-next = {!!} ; chain∋x = ⟪ subst (λ k → odef A (& k)) *iso sa , case1 (ZChain.chain∋x zc0) ⟫ ; is-max = {!!} } where + -- extend with f x + zc5 : HOD + zc5 = record { od = record { def = λ z → odef A z ∧ (odef (ZChain.chain zc0) z ∨ (z ≡ f x)) } ; odmax = & A ; <odmax = z07 } + ⊆-zc5 : zc5 ⊆ A + ⊆-zc5 = record { incl = λ lt → proj1 lt } + IPO = ⊆-IsPartialOrderSet ⊆-zc5 PO + fx>zc : ( z : Ordinal ) → (odef (ZChain.chain zc0) z → * z < * ( f x ) + fx>zc = ? + cmp : Trichotomous _ _ + cmp record { elm = a ; is-elm = aa } record { elm = b ; is-elm = ab } = ? + zc6 : IsTotalOrderSet zc5 + zc6 = record { isEquivalence = IsStrictPartialOrder.isEquivalence IPO ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z} + ; compare = cmp } + ... | case2 not with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) {!!} {!!} ) )) + ... | case1 y = {!!} + ... | case2 not = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ; chain∋x = {!!} ; is-max = {!!} } -- no extention ind f mf x prev | no ¬ox with trio< (& A) x --- limit ordinal case ... | tri< a ¬b ¬c = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; chain∋x = {!!} ; is-max = {!!} } where