Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1168:938ada7fd66c
Neighbor Filter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 21 Jan 2023 20:20:43 +0900 |
parents | fee9249a2f50 |
children | 46dc298bdd77 |
files | src/Topology.agda |
diffstat | 1 files changed, 21 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sat Jan 21 18:30:23 2023 +0900 +++ b/src/Topology.agda Sat Jan 21 20:20:43 2023 +0900 @@ -468,15 +468,29 @@ P∋limit : odef P limit is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ⊆ (* v) -Neighbor→F : {P : HOD} (TP : Topology P) (x : Ordinal ) → Filter {Power P} {P} (λ x → x) -Neighbor→F {P} TP x = record { filter = NF ; f⊆L = NF⊆PP ; filter1 = ? ; filter2 = ? } where +NeighborF : {P : HOD} (TP : Topology P) (x : Ordinal ) → Filter {Power P} {P} (λ x → x) +NeighborF {P} TP x = record { filter = NF ; f⊆L = NF⊆PP ; filter1 = f1 ; filter2 = ? } where + nf00 : {v : Ordinal } → Neighbor TP x v → odef (Power P) v + nf00 {v} nei y vy = Neighbor.v⊆P nei vy NF : HOD - NF = record { od = record { def = λ v → Neighbor TP x v } ; odmax = ? ; <odmax = ? } + NF = record { od = record { def = λ v → Neighbor TP x v } ; odmax = & (Power P) ; <odmax = λ lt → odef< (nf00 lt) } NF⊆PP : NF ⊆ Power P - NF⊆PP = nf00 where - nf00 : {v : Ordinal } → Neighbor TP x v → odef (Power P) v - nf00 {v} nei y vy = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou nei)) ? - + NF⊆PP = nf00 + f1 : {p q : HOD} → Power P ∋ q → NF ∋ p → p ⊆ q → NF ∋ q + f1 {p} {q} Pq Np p⊆q = record { u = Neighbor.u Np ; ou = Neighbor.ou Np ; ux = Neighbor.ux Np ; v⊆P = Pq _ ; o⊆u = f11 } where + f11 : * (Neighbor.u Np) ⊆ * (& q) + f11 {x} ux = subst (λ k → odef k x ) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso (Neighbor.o⊆u Np ux)) ) + f2 : {p q : HOD} → NF ∋ p → NF ∋ q → Power P ∋ (p ∩ q) → NF ∋ (p ∩ q) + f2 {p} {q} Np Nq Ppq = record { u = upq ; ou = ou ; ux = ux ; v⊆P = Ppq _ ; o⊆u = f20 } where + upq : Ordinal + upq = & ( * (Neighbor.u Np) ∩ * (Neighbor.u Nq) ) + ou : odef (OS TP) upq + ou = o∩ TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Np)) (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Nq)) + ux : odef (* upq) x + ux = subst ( λ k → odef k x ) (sym *iso) ⟪ Neighbor.ux Np , Neighbor.ux Nq ⟫ + f20 : * upq ⊆ * (& (p ∩ q)) + f20 = subst₂ (λ j k → j ⊆ k ) (sym *iso) (sym *iso) ( λ {x} pq + → ⟪ subst (λ k → odef k x) *iso (Neighbor.o⊆u Np (proj1 pq)) , subst (λ k → odef k x) *iso (Neighbor.o⊆u Nq (proj2 pq)) ⟫ ) -- FIP is UFL -- filter Base