Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1214:93e1869bb57c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Mar 2023 13:41:57 +0900 |
parents | 22de2d4f7271 |
children | 881e85e12e38 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 7 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Sun Mar 05 12:16:07 2023 +0900 +++ b/src/Tychonoff.agda Sun Mar 05 13:41:57 2023 +0900 @@ -359,7 +359,13 @@ ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k) (sym (trans x=ψz1 &iso)) (zp1 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) (subst (λ k → odef (* x) k) (sym &iso) az1 )) ) x⊆pxq : * x ⊆ ZFP p Q - x⊆pxq = ? + x⊆pxq {w} xw with F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) xw + ... | ab-pair {a} {b} pw qw = ab-pair ty08 qw where + ty07 : odef (* x) (& < * a , * b >) + ty07 = xw + ty08 : odef p a + ty08 = subst (λ k → odef k a ) (subst₂ (λ j k → j ≡ k) *iso *iso (sym (cong (*) x=ψz))) + record { z = _ ; az = xw ; x=ψz = ? } ty05 : filter F ∋ ZFP p Q ty05 = filter1 F (λ z wz → isP→PxQ p⊆P (subst (λ k → odef k z) *iso wz)) (subst (λ k → odef (filter F) k) (sym &iso) fx) x⊆pxq ty06 : ZFP p Q ⊆ ZFP q Q