Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 485:94586e4e0378
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 07 Apr 2022 15:53:37 +0900 |
parents | 419a3f4d5d97 |
children | d2f204c5d67b |
files | src/filter.agda src/zorn.agda |
diffstat | 2 files changed, 17 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Wed Apr 06 17:46:41 2022 +0900 +++ b/src/filter.agda Thu Apr 07 15:53:37 2022 +0900 @@ -231,13 +231,6 @@ open import zorn --- MaximumSubset' : {L P : HOD} --- → o∅ o< & L → o∅ o< & P → P ⊆ L --- → PartialOrderSet O P (_⊆'_ O) --- → ( (B : HOD) → B ⊆ P → TotalOrderSet O B (_⊆'_ O) → SUP O P B (_⊆'_ O) ) --- → Maximal O P (_⊆'_ O) --- MaximumSubset' {L} {P} 0<L 0<P P⊆L PO SP = Zorn-lemma O {P} {_⊆'_ O } 0<P PO SP - MaximumFilterExist : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter LP MaximumFilterExist {L} {P} LP NEG CAP F 0<L 0<F Fprop = {!!} where
--- a/src/zorn.agda Wed Apr 06 17:46:41 2022 +0900 +++ b/src/zorn.agda Thu Apr 07 15:53:37 2022 +0900 @@ -76,7 +76,7 @@ field fb : Ordinal → HOD A∋fb : (ox : Ordinal ) → A ∋ fb ox - monotonic : (ox oy : Ordinal ) → ox o< y → ox o< oy → fb ox < fb oy + monotonic : {ox oy : Ordinal } → ox o< y → ox o< oy → fb ox < fb oy Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } → o∅ o< & A @@ -99,9 +99,8 @@ z09 : {y : Ordinal} → (odef A y ∧ (x < (* y))) → y o< & A z09 {y} P = subst (λ k → k o< & A) &iso (c<→o< {* y} (subst (λ k → odef A k) (sym &iso) (proj1 P))) z01 : {a b : HOD} → A ∋ a → A ∋ b → (a ≡ b ) ∨ (a < b ) → b < a → ⊥ - z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a - z01 {a} {b} A∋a A∋b (case2 a<b) b<a = {!!} - -- proj1 (PO (me A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me A∋b) (me A∋a)) b=a ) b<a ) ⟫ + z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me A∋b) (me A∋a)) (sym a=b)) b<a + z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (proj1 (PO (me A∋b) (me A∋a)) b<a) a<b -- ZChain is not compatible with the SUP condition record BX (y : Ordinal) (fb : Ordinal → HOD ) : Set n where field @@ -109,10 +108,23 @@ is-fb : y ≡ & (fb bx ) B : (z : ZChain A (& A) _<_ ) → HOD B z = record { od = record { def = λ x → BX x ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } + z11 : (z : ZChain A (& A) _<_ ) → (x : Element (B z)) → elm x ≡ ZChain.fb z (BX.bx (is-elm x)) + z11 z x = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) (BX.is-fb (is-elm x)) ) + obx : (z : ZChain A (& A) _<_ ) → {x : HOD} → B z ∋ x → Ordinal + obx z {x} bx = BX.bx bx + obx=fb : (z : ZChain A (& A) _<_ ) → {x : HOD} → (bx : B z ∋ x ) → x ≡ ZChain.fb z ( obx z bx ) + obx=fb z {x} bx = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) (BX.is-fb bx)) + B-is-total : (z : ZChain A (& A) _<_ ) → TotalOrderSet (B z) _<_ + B-is-total z x y with trio< (obx z (is-elm x)) (obx z (is-elm y)) + ... | tri< a ¬b ¬c = tri< z10 {!!} {!!} where + z10 : elm x < elm y + z10 = subst₂ (λ j k → j < k ) (sym (z11 z x)) (sym (z11 z y)) (ZChain.monotonic z {!!} a ) + ... | tri≈ ¬a b ¬c = tri≈ {!!} {!!} {!!} + ... | tri> ¬a ¬b c = tri> {!!} {!!} {!!} B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx)) } ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) - ZChain→¬SUP z sp = ⊥-elim (z02 (ZChain.fb z {!!}) {!!} {!!} ) where + ZChain→¬SUP z sp = ⊥-elim {!!} where z03 : & (SUP.sup sp) o< osuc (& A) z03 = ordtrans (c<→o< (SUP.A∋maximal sp)) <-osuc z02 : (x : HOD) → B z ∋ x → SUP.sup sp < x → ⊥