Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 814:95db436cce67
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 16 Aug 2022 16:29:57 +0900 |
parents | 1627cc8f193e |
children | d70f3f0681ea |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Tue Aug 16 16:01:42 2022 +0900 +++ b/src/zorn.agda Tue Aug 16 16:29:57 2022 +0900 @@ -284,7 +284,7 @@ f-total : IsTotalOrderSet chain sup : {x : Ordinal } → x o< z → SUP A (UnionCF A f mf ay supf x) - sup=u : {b : Ordinal} → (ab : odef A b) → b o< z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b + sup=u : {b : Ordinal} → (ab : odef A b) → b o≤ z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b supf-is-sup : {x : Ordinal } → (x≤z : x o< z) → supf x ≡ & (SUP.sup (sup x≤z) ) csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) @@ -511,7 +511,7 @@ b<A : b o< & A b<A = z09 ab m05 : b ≡ ZChain.supf zc b - m05 = sym ( ZChain.sup=u zc ab (z09 ab) + m05 = sym ( ZChain.sup=u zc ab (o<→≤ (z09 ab) ) record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) uz ) } ) m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b m08 {z} fcz = ZChain.fcy<sup zc b<A fcz @@ -519,7 +519,7 @@ → FClosure A f (ZChain.supf zc sup1) z1 → z1 <= ZChain.supf zc b m09 {sup1} {z} s<b fcz = ZChain.order zc b<A s<b fcz m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = ZChain.sup=u zc ab b<A + m06 = record { fcy<sup = m08 ; order = m09 ; supu=u = ZChain.sup=u zc ab (o<→≤ b<A ) record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) uz ) } } ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → @@ -539,10 +539,10 @@ → FClosure A f (ZChain.supf zc sup1) z1 → z1 <= ZChain.supf zc b m08 {sup1} {z1} s<b fc = ZChain.order zc m09 s<b fc m05 : b ≡ ZChain.supf zc b - m05 = sym (ZChain.sup=u zc ab m09 + m05 = sym (ZChain.sup=u zc ab (o<→≤ m09) record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) lt )} ) -- ZChain on x m06 : ChainP A f mf ay (ZChain.supf zc) b - m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = ZChain.sup=u zc ab m09 + m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = ZChain.sup=u zc ab (o<→≤ m09) record { x<sup = λ lt → IsSup.x<sup is-sup (chain-mono1 (osucc b<x) lt )} } --- @@ -806,16 +806,16 @@ sup : {z : Ordinal} → z o< x → SUP A (UnionCF A f mf ay supf1 z) sup {z} z<x with trio< z px ... | tri< a ¬b ¬c = SUP⊆ (UnionCFR⊆ o≤-refl ? (o<→≤ a)) ( ZChain.sup zc a ) - ... | tri> ¬a ¬b px<z = ? ... | tri≈ ¬a b ¬c = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = zc61 } where zc61 : {w : HOD} → UnionCF A f mf ay supf1 z ∋ w → (w ≡ SUP.sup sup1) ∨ (w < SUP.sup sup1) zc61 {w} lt = ? + ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) sup=u : {b : Ordinal} (ab : odef A b) → - b o< x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b - sup=u {b} ab b<x is-sup with trio< b px - ... | tri< a ¬b ¬c = ZChain.sup=u zc ab a record { x<sup = {!!} } + b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + sup=u {b} ab b≤x is-sup with trio< b px + ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = {!!} } ... | tri≈ ¬a b ¬c = ? - ... | tri> ¬a ¬b px<b = {!!} + ... | tri> ¬a ¬b px<b = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) ? ⟫ ) csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) csupf {b} b≤x with trio< b px | inspect supf1 b ... | tri< a ¬b ¬c | _ = UnionCF⊆ o≤-refl (o<→≤ a) b≤x ( ZChain.csupf zc (o<→≤ a) ) @@ -968,7 +968,7 @@ zc8 = ZChain.supf-is-sup (pzc z a) ? ... | tri≈ ¬a b ¬c = ? ... | tri> ¬a ¬b c = ? - sup=u : {b : Ordinal} (ab : odef A b) → b o< x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b sup=u {b} ab b<x is-sup with trio< b x ... | tri< a ¬b ¬c = ZChain.sup=u (pzc (osuc b) (ob<x lim a)) ab {!!} record { x<sup = {!!} } ... | tri≈ ¬a b ¬c = {!!}