Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 842:962a9f3dbd3c
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Aug 2022 09:49:25 +0900 |
parents | 01361e10ad96 |
children | ef0433f41e55 |
files | src/zorn.agda |
diffstat | 1 files changed, 27 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Aug 29 19:56:39 2022 +0900 +++ b/src/zorn.agda Tue Aug 30 09:49:25 2022 +0900 @@ -271,6 +271,15 @@ UnionCF A f mf ay supf x = record { od = record { def = λ z → odef A z ∧ UChain A f mf ay supf x z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } +supf-inject0 : {x y : Ordinal } {supf : Ordinal → Ordinal } → (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y ) + → supf x o< supf y → x o< y +supf-inject0 {x} {y} {supf} supf-mono sx<sy with trio< x y +... | tri< a ¬b ¬c = a +... | tri≈ ¬a refl ¬c = ⊥-elim ( o<¬≡ (cong supf refl) sx<sy ) +... | tri> ¬a ¬b y<x with osuc-≡< (supf-mono (o<→≤ y<x) ) +... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) sx<sy ) +... | case2 lt = ⊥-elim ( o<> sx<sy lt ) + record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) ( z : Ordinal ) : Set (Level.suc n) where field @@ -764,9 +773,11 @@ -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x no-extension : (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A pchain x f → ZChain A f mf ay x - no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; supf-mono = ? + no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; supf-mono = supf-mono ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where + supf-mono : {a b : Ordinal } → a o≤ b → supf1 a o≤ supf1 b + supf-mono = ? pchain0=1 : pchain ≡ pchain1 pchain0=1 = ==→o≡ record { eq→ = zc10 ; eq← = zc11 } where zc10 : {z : Ordinal} → OD.def (od pchain) z → OD.def (od pchain1) z @@ -777,26 +788,31 @@ ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ ... | ⟪ ua1 , ch-is-sup u u≤x u1-is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x u1-is-sup (fsuc _ fc₁) ⟫ zc12 (init asp refl ) with trio< u1 px | inspect supf1 u1 - ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x ? ) + ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x (o<→≤ px<x) ) record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 ) fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → supf1 s o< supf1 u1 → FClosure A f (supf1 s) z2 → (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1) - order {s} {z2} s<u1 fc with trio< s px - ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc ) - ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc ) - ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s ? )) -- px o< s < u1 < px - ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x ? ) + order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s + ... | tri< a ¬b ¬c | _ = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup (subst₂ (λ j k → j o< k) refl eq1 s<u1) fc ) + ... | tri≈ ¬a b ¬c | _ = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup (subst₂ (λ j k → j o< k) refl eq1 s<u1) fc ) + ... | tri> ¬a ¬b px<s | record { eq = eq2 } = ⊥-elim ( o<¬≡ refl (ordtrans px<s (ordtrans zc14 a) )) where -- px o< s < u1 < px + zc14 : s o< u1 + zc14 = supf-inject0 supf-mono (subst₂ (λ j k → j o< k ) (sym eq2) refl s<u1 ) + --- s ≡ sp1, px<s = px o< sp1 + ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x (o<→≤ px<x) ) record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 ) fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc ) order : {s : Ordinal} {z2 : Ordinal} → supf1 s o< supf1 u1 → FClosure A f (supf1 s) z2 → (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1) - order {s} {z2} s<u1 fc with trio< s px - ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc ) - ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc ) - ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b ? ) )) -- px o< s < u1 = px + order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s + ... | tri< a ¬b ¬c | _ = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup (subst₂ (λ j k → j o< k) refl eq1 s<u1) fc ) + ... | tri≈ ¬a b ¬c | _ = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup (subst₂ (λ j k → j o< k) refl eq1 s<u1) fc ) + ... | tri> ¬a ¬b px<s | record { eq = eq2 } = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b zc14 ) )) where -- px o< s < u1 = px + zc14 : s o< u1 + zc14 = supf-inject0 supf-mono (subst₂ (λ j k → j o< k ) (sym eq2) refl s<u1 ) ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with osuc-≡< u1≤x ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 ) ... | case2 lt = ⊥-elim ( o<> lt px<u1 )