Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 514:97c8abf28706
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 16 Apr 2022 11:51:43 +0900 |
parents | 5077d708f32f |
children | 5faeae7cfe22 |
files | src/zorn.agda |
diffstat | 1 files changed, 27 insertions(+), 17 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Apr 16 01:12:50 2022 +0900 +++ b/src/zorn.agda Sat Apr 16 11:51:43 2022 +0900 @@ -177,32 +177,38 @@ import Data.Nat.Properties as NP open import nat -data Chain (A : HOD) (s : Ordinal) (next : (x : Ordinal ) → odef A x → Ordinal ) : ( x : Ordinal ) → Set n where +data Chain (A : HOD) (s : Ordinal) (next : Ordinal → Ordinal ) : ( x : Ordinal ) → Set n where cfirst : odef A s → Chain A s next s - csuc : (x : Ordinal ) → (ax : odef A x ) → Chain A s next x → odef A (next x ax) → Chain A s next (next x ax ) + csuc : (x : Ordinal ) → (ax : odef A x ) → Chain A s next x → odef A (next x) → Chain A s next (next x ) -ct∈A : (A : HOD ) (s : Ordinal) → (next : (x : Ordinal ) → odef A x → Ordinal ) → {x : Ordinal} → Chain A s next x → odef A x +ct∈A : (A : HOD ) (s : Ordinal) → (next : Ordinal → Ordinal ) → {x : Ordinal} → Chain A s next x → odef A x ct∈A A s next {x} (cfirst x₁) = x₁ -ct∈A A s next {.(next x ax)} (csuc x ax t anx) = anx +ct∈A A s next {.(next x )} (csuc x ax t anx) = anx -ChainClosure : (A : HOD) (s : Ordinal) → (next : (x : Ordinal ) → odef A x → Ordinal ) → HOD +ChainClosure : (A : HOD) (s : Ordinal) → (next : Ordinal → Ordinal ) → HOD ChainClosure A s next = record { od = record { def = λ x → Chain A s next x } ; odmax = & A ; <odmax = cc01 } where cc01 : {y : Ordinal} → Chain A s next y → y o< & A cc01 {y} cy = subst (λ k → k o< & A ) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso) ( ct∈A A s next cy ) ) ) -cton0 : (A : HOD ) (s : Ordinal) → (next : (x : Ordinal ) → odef A x → Ordinal ) {y : Ordinal } → Chain A s next y → ℕ +cton0 : (A : HOD ) (s : Ordinal) → (next : Ordinal → Ordinal ) {y : Ordinal } → Chain A s next y → ℕ cton0 A s next (cfirst _) = zero cton0 A s next (csuc x ax z _) = suc (cton0 A s next z) -cton : (A : HOD ) (s : Ordinal) → (next : (x : Ordinal ) → odef A x → Ordinal ) → Element (ChainClosure A s next) → ℕ +cton : (A : HOD ) (s : Ordinal) → (next : Ordinal → Ordinal ) → Element (ChainClosure A s next) → ℕ cton A s next y = cton0 A s next (is-elm y) +cinext : (A : HOD) {x : Ordinal } → (ax : A ∋ * x ) → (ifc : InFiniteIChain A ax ) → Ordinal → Ordinal +cinext A ax ifc y with ODC.∋-p O (IChainSet (me ax)) (* y) +... | yes ics-y = IChainSup>.y ( InFiniteIChain.c-infinite ifc y (subst (λ k → odef (IChainSet (me ax)) k) &iso ics-y )) +... | no _ = o∅ + InFCSet : (A : HOD) → {x : Ordinal} (ax : A ∋ * x) → (ifc : InFiniteIChain A ax ) → HOD -InFCSet A {x} ax ifc = ChainClosure (IChainSet {A} (me ax)) x (λ y ay → IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) ) +InFCSet A {x} ax ifc = ChainClosure (IChainSet {A} (me ax)) x {!!} -- (λ y → IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) ) InFCSet⊆A : (A : HOD) → {x : Ordinal} (ax : A ∋ * x) → (ifc : InFiniteIChain A ax ) → InFCSet A ax ifc ⊆ A InFCSet⊆A A {x} ax ifc = record { incl = λ {y} lt → incl (IChainSet⊆A (me ax)) ( - ct∈A (IChainSet {A} (me ax)) x (λ y ay → IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) ) lt ) } + ct∈A (IChainSet {A} (me ax)) x {!!} lt ) } + -- ct∈A (IChainSet {A} (me ax)) x (λ y ay → IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) ) lt ) } ChainClosure-is-total : (A : HOD) → {x : Ordinal} (ax : A ∋ * x) → IsPartialOrderSet A @@ -213,14 +219,13 @@ IPO : IsPartialOrderSet (InFCSet A ax ifc ) IPO = ⊆-IsPartialOrderSet record { incl = λ {y} lt → incl (InFCSet⊆A A {x} ax ifc) lt} PO B = IChainSet {A} (me ax) - cnext : (y : Ordinal ) → odef B y → Ordinal - cnext y ay = IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) + cnext = cinext A ax ifc ct02 : {oy : Ordinal} → (y : Chain B x cnext oy ) → A ∋ * oy ct02 y = incl (IChainSet⊆A {A} (me ax)) (subst (λ k → odef (IChainSet (me ax)) k) (sym &iso) (ct∈A B x cnext y) ) ct-inject : {ox oy : Ordinal} → (x1 : Chain B x cnext ox ) → (y : Chain B x cnext oy ) → (cton0 B x cnext x1) ≡ (cton0 B x cnext y) → ox ≡ oy ct-inject {ox} {ox} (cfirst x) (cfirst x₁) refl = refl - ct-inject {.(cnext x₀ ax)} {.(cnext x₃ ax₁)} (csuc x₀ ax x₁ x₂) (csuc x₃ ax₁ y x₄) eq = {!!} where + ct-inject {.(cnext x₀ )} {.(cnext x₃ )} (csuc x₀ ax x₁ x₂) (csuc x₃ ax₁ y x₄) eq = cong cnext ct05 where ct06 : {x y : ℕ} → suc x ≡ suc y → x ≡ y ct06 refl = refl ct05 : x₀ ≡ x₃ @@ -228,11 +233,16 @@ ct-monotonic : {ox oy : Ordinal} → (x1 : Chain B x cnext ox ) → (y : Chain B x cnext oy ) → (cton0 B x cnext x1) Data.Nat.< (cton0 B x cnext y) → * ox < * oy ct-monotonic {ox} {oy} x1 (csuc oy1 ay y _) (s≤s lt) with NP.<-cmp ( cton0 B x cnext x1 ) ( cton0 B x cnext y ) - ... | tri< a ¬b ¬c = IsStrictPartialOrder.trans PO {me (ct02 x1) } {me (ct02 y)} {me ct03} (ct-monotonic x1 y a ) ct01 where - ct03 : A ∋ * (IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 ay)) - ct03 = subst (λ k → odef A k ) (sym &iso) (IChainSup>.A∋y (InFiniteIChain.c-infinite ifc oy1 ay)) - ct01 : * oy1 < * ( IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 ay) ) - ct01 = (IChainSup>.y>x (InFiniteIChain.c-infinite ifc oy1 ay)) + ... | tri< a ¬b ¬c = ct07 where + ct07 : * ox < * (cnext oy1) + ct07 with ODC.∋-p O (IChainSet {A} (me ax)) (* oy1) + ... | no not = ⊥-elim ( not (subst (λ k → odef (IChainSet {A} (me ax)) k ) (sym &iso) ay ) ) + ... | yes ay1 = IsStrictPartialOrder.trans PO {me (ct02 x1) } {me (ct02 y)} {me ct031 } (ct-monotonic x1 y a ) ct011 where + ct031 : A ∋ * (IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 ) )) + ct031 = subst (λ k → odef A k ) (sym &iso) ( + IChainSup>.A∋y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) ) + ct011 : * oy1 < * ( IChainSup>.y (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) ) + ct011 = IChainSup>.y>x (InFiniteIChain.c-infinite ifc oy1 (subst (λ k → odef (IChainSet {A} (me ax)) k) &iso ay1 )) ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b c = {!!} cmp : Trichotomous _ _