Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1132:9904b262c08f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 11 Jan 2023 17:26:07 +0900 |
parents | d3dbc18d2437 |
children | c2c0cf7f2d7e |
files | src/filter.agda |
diffstat | 1 files changed, 14 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Wed Jan 11 13:52:04 2023 +0900 +++ b/src/filter.agda Wed Jan 11 17:26:07 2023 +0900 @@ -201,16 +201,14 @@ y-p⊂x : ( * y \ * p ) ⊆ * x max→ultra : {L P : HOD} (LP : L ⊆ Power P) - → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p \ q)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∪ q)) - → (mx : MaximumFilter {L} {P} LP ) → ultra-filter ( MaximumFilter.mf mx ) -max→ultra {L} {P} LP NEG CAP CUP mx = record { proper = MaximumFilter.proper mx ; ultra = ultra } where + → (mx : MaximumFilter {L} {P} LP ) → {y : Ordinal } → odef (filter (MaximumFilter.mf mx)) y → ultra-filter ( MaximumFilter.mf mx ) +max→ultra {L} {P} LP CAP mx {y} mxy = record { proper = MaximumFilter.proper mx ; ultra = ultra } where mf = MaximumFilter.mf mx ultra : {p : HOD} → L ∋ p → L ∋ (P \ p) → (filter mf ∋ p) ∨ (filter mf ∋ (P \ p)) ultra {p} Lp Lnp with ODC.∋-p O (filter mf) p ... | yes y = case1 y - ... | no np = ? where + ... | no np = case2 (subst (λ k → k ∋ (P \ p)) F=mf F∋P-p) where F : HOD F = record { od = record { def = λ x → odef L x ∧ Fp {L} {P} LP mx (& p) x } ; odmax = & L ; <odmax = λ lt → odef< (proj1 lt) } @@ -243,11 +241,18 @@ mu03 : (* x \ * (& p)) ⊆ * x mu03 {z} ⟪ xz , _ ⟫ = xz F∋P-p : F ∋ (P \ p ) - F∋P-p = ⟪ Lnp , record { y = ? ; mfy = ? ; y-p⊂x = ? } ⟫ - F≤ : & (filter (MaximumFilter.mf mx)) o≤ & F - F≤ = ⊆→o≤ ? + F∋P-p = ⟪ Lnp , record { y = y ; mfy = mxy ; y-p⊂x = mu30 } ⟫ where + mu30 : (* y \ * (& p)) ⊆ * (& (P \ p)) + mu30 {z} ⟪ yz , ¬pz ⟫ = subst (λ k → odef k z) (sym *iso) ( ⟪ Pz , (λ pz → ¬pz (subst (λ k → odef k z) (sym *iso) pz )) ⟫ ) where + Pz : odef P z + Pz = LP (f⊆L mf mxy) _ yz FisProper : ¬ (filter FisFilter ∋ od∅) - FisProper = {!!} + FisProper ⟪ L0 , record { y = z ; mfy = mfz ; y-p⊂x = z-p⊂x } ⟫ = ? + mu40 = (MaximumFilter.is-maximum mx) + F=mf : F ≡ filter mf + F=mf with osuc-≡< ( ⊆→o≤ FisGreater ) + ... | case1 eq = &≡&→≡ (sym eq) + ... | case2 lt = ⊥-elim ( MaximumFilter.is-maximum mx FisFilter FisProper ⟪ lt , FisGreater ⟫ ) open _==_