Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 968:9a8041a7f3c9
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Nov 2022 13:39:45 +0900 |
parents | cd0ef83189c5 |
children | ec7f3473ff55 |
files | src/zorn.agda |
diffstat | 1 files changed, 26 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Nov 05 18:29:21 2022 +0900 +++ b/src/zorn.agda Sun Nov 06 13:39:45 2022 +0900 @@ -884,8 +884,8 @@ zc43 = ? zc41 : ZChain A f mf ay x - zc41 with MinSUP.x≤sup sup1 (case2 (init (ZChain.asupf zc {px}) refl )) - zc41 | (case2 sfpx<sp1) = record { supf = supf1 ; sup=u = ? ; asupf = ? ; supf-mono = supf1-mono ; supf-< = ? + zc41 with zc43 + zc41 | (case2 sp≤x ) = record { supf = supf1 ; sup=u = ? ; asupf = ? ; supf-mono = supf1-mono ; supf-< = ? ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = csupf1 } where -- supf0 px is included by the chain of sp1 -- ( UnionCF A f mf ay supf0 px ∪ FClosure (supf0 px) ) ≡ UnionCF supf1 x @@ -909,6 +909,9 @@ ... | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (sym b) px<z ) ... | tri> ¬a ¬b c = refl + sf=eq : { z : Ordinal } → z o< x → supf0 z ≡ supf1 z + sf=eq {z} z<x = sym (sf1=sf0 (subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x )) + asupf1 : {z : Ordinal } → odef A (supf1 z) asupf1 {z} with trio< z px ... | tri< a ¬b ¬c = ZChain.asupf zc @@ -938,6 +941,13 @@ zc18 = subst (λ k → k o≤ sp1) zc20( MinSUP.minsup zc21 (MinSUP.asm sup1) zc24 ) ... | tri> ¬a ¬b c = o≤-refl + sf≤ : { z : Ordinal } → x o≤ z → supf0 x o≤ supf1 z + sf≤ {z} x≤z with trio< z px + ... | tri< a ¬b ¬c = ⊥-elim ( o<> (osucc a) (subst (λ k → k o≤ z) (sym (Oprev.oprev=x op)) x≤z ) ) + ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> x≤z (subst (λ k → k o< x ) (sym b) px<x )) + ... | tri> ¬a ¬b c = subst₂ (λ j k → j o≤ k ) (trans (sf1=sf0 o≤-refl ) (sym (ZChain.supfmax zc px<x))) (sf1=sp1 c) + (supf1-mono (o<→≤ c )) + -- px o<z → spuf0 x ≡ supf0 px ≡ supf1 px o≤ supf1 z fcup : {u z : Ordinal } → FClosure A f (supf1 u) z → u o≤ px → FClosure A f (supf0 u) z fcup {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (sf1=sf0 u≤px) fc @@ -1122,7 +1132,7 @@ -- ⊥-elim ( ¬p<x<op ⟪ px<z1 , subst (λ k → z1 o< k) (sym opx=x) z1<x ⟫ ) - zc41 | (case1 sfp=sp1 ) = record { supf = supf0 ; sup=u = ? ; asupf = ? ; supf-mono = ? ; supf-< = ? + zc41 | (case1 x<sp ) = record { supf = supf0 ; sup=u = ? ; asupf = ? ; supf-mono = ? ; supf-< = ? ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = ? } where -- supf0 px not is included by the chain @@ -1131,7 +1141,7 @@ supf1 : Ordinal → Ordinal supf1 z with trio< z px ... | tri< a ¬b ¬c = supf0 z - ... | tri≈ ¬a b ¬c = supf0 px + ... | tri≈ ¬a b ¬c = supf0 z ... | tri> ¬a ¬b c = supf0 px sf1=sf0 : {z : Ordinal } → z o< px → supf1 z ≡ supf0 z @@ -1140,6 +1150,17 @@ ... | tri≈ ¬a b ¬c = ⊥-elim ( ¬a z<px ) ... | tri> ¬a ¬b c = ⊥-elim ( ¬a z<px ) + sf=eq : { z : Ordinal } → z o< x → supf0 z ≡ supf1 z + sf=eq {z} z<x with trio< z px + ... | tri< a ¬b ¬c = refl + ... | tri≈ ¬a b ¬c = refl + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , subst (λ k → z o< k) (sym (Oprev.oprev=x op)) z<x ⟫ ) + sf≤ : { z : Ordinal } → x o≤ z → supf0 x o≤ supf1 z + sf≤ {z} x≤z with trio< z px + ... | tri< a ¬b ¬c = ⊥-elim ( o<> (osucc a) (subst (λ k → k o≤ z) (sym (Oprev.oprev=x op)) x≤z ) ) + ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> x≤z (subst (λ k → k o< x ) (sym b) px<x )) + ... | tri> ¬a ¬b c = o≤-refl0 ( ZChain.supfmax zc px<x ) + zc17 : {z : Ordinal } → supf0 z o≤ supf0 px zc17 = ? -- px o< z, px o< supf0 px @@ -1152,7 +1173,7 @@ ... | tri> ¬a ¬b c = o≤-refl supf-mono1 {z} {w} z≤w | tri> ¬a ¬b c with trio< z px ... | tri< a ¬b ¬c = zc17 - ... | tri≈ ¬a b ¬c = o≤-refl + ... | tri≈ ¬a b ¬c = o≤-refl0 ? ... | tri> ¬a ¬b c = o≤-refl pchain1 : HOD