Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 763:9aa0fc917100
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 Jul 2022 16:36:36 +0900 |
parents | eb68d0870cc6 |
children | bbf12d61143f |
files | src/zorn.agda |
diffstat | 1 files changed, 18 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 25 14:56:49 2022 +0900 +++ b/src/zorn.agda Mon Jul 25 16:36:36 2022 +0900 @@ -494,23 +494,18 @@ m04 = ZChain1.is-max (prev px px<x) m03 b<px ab (case2 record {x<sup = λ {z} lt → IsSup.x<sup is-sup (chain-mono2 x ( o<→≤ (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc )) o≤-refl lt) } ) a<b ... | tri≈ ¬a b=px ¬c = ⟪ ab , ch-is-sup b (o<→≤ b<x) m06 (subst (λ k → FClosure A f k b) m05 (init ab)) ⟫ where + b<A : b o< & A + b<A = z09 ab m05 : b ≡ ZChain.supf zc b m05 = sym ( ZChain.sup=u zc ab (z09 ab) record { x<sup = λ {z} uz → IsSup.x<sup is-sup (chain-mono2 x (osucc b<x) o≤-refl uz ) } ) - m04 : {z : Ordinal} → FClosure A f y z → z << ZChain.supf zc b - m04 {z} fcz with IsSup.x<sup is-sup ⟪ A∋fc y f mf fcz , ch-init fcz ⟫ - ... | case1 z=b = ? - ... | case2 z<b = subst (λ k → z << k) m05 z<b - m07 : {sup1 z1 : Ordinal} → sup1 o< b → FClosure A f (ZChain.supf zc sup1) z1 → z1 << ZChain.supf zc b - m07 {sup1} s<b (init ay) with IsSup.x<sup is-sup ⟪ A∋fc y f mf (init ay) , ch-is-sup ⟫ - ... | case1 z=b = ? - ... | case2 z<b = subst (λ k → z << k) m05 z<b - m07 {sup1} s<b (fsuc is-sup-z fcz) with IsSup.x<sup is-sup ⟪ A∋fc y f mf fcz , ch-is-sup ⟫ - ... | case1 z=b = ? - ... | case2 z<b = subst (λ k → z << k) m05 z<b + m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z << ZChain.supf zc b + m08 {z} fcz = ZChain.fcy<sup zc b<A fcz + m09 : {sup1 z1 : Ordinal} → sup1 o< b → FClosure A f (ZChain.supf zc sup1) z1 → z1 << ZChain.supf zc b + m09 {sup1} {z} s<b fcz = ZChain.order zc b<A s<b fcz m06 : ChainP A f mf ay (ZChain.supf zc) b b m06 = record { csupz = subst (λ k → FClosure A f k b) m05 (init ab) ; supfu=u = sym m05 - ; fcy<sup = m04 ; order = ? } + ; fcy<sup = m08 ; order = m09 } ... | no lim = record { is-max = is-max } where is-max : {a : Ordinal} {b : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) a → b o< x → (ab : odef A b) → @@ -618,6 +613,7 @@ ; initial = isy ; f-next = inext ; f-total = itotal ; sup=u = λ _ b<0 → ⊥-elim (¬x<0 b<0) ; order = λ b<0 → ⊥-elim (¬x<0 b<0) } where isupf : Ordinal → Ordinal isupf z = & (SUP.sup (ysup f mf ay)) + sp = ysup f mf ay cy : odef (UnionCF A f mf ay isupf o∅) y cy = ⟪ ay , ch-init (init ay) ⟫ y<sup : * y ≤ SUP.sup (ysup f mf ay) @@ -633,13 +629,16 @@ itotal : IsTotalOrderSet (UnionCF A f mf ay isupf o∅) itotal {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) - uz01 = chain-total A f mf ay isupf (proj2 ca) (proj2 cb) - imax : {a b : Ordinal} → odef (UnionCF A f mf ay isupf o∅) a → - b o< o∅ → (ab : odef A b) → - HasPrev A (UnionCF A f mf ay isupf o∅) ab f ∨ IsSup A (UnionCF A f mf ay isupf o∅) ab → - * a < * b → odef (UnionCF A f mf ay isupf o∅) b - imax {a} {b} ua b<x ab (case1 hasp) a<b = subst (λ k → odef (UnionCF A f mf ay isupf o∅) k ) (sym (HasPrev.x=fy hasp)) ( inext (HasPrev.ay hasp) ) - imax {a} {b} ua b<x ab (case2 sup) a<b = ⊥-elim ( ¬x<0 b<x ) + uz01 = chain-total A f mf ay isupf (proj2 ca) (proj2 cb) + + csupf : {z : Ordinal} → odef (UnionCF A f mf ay isupf o∅) (isupf z) + csupf {z} = ⟪ SUP.A∋maximal sp , ch-is-sup o∅ o≤-refl uz02 (init ( SUP.A∋maximal sp)) ⟫ where + uz02 : ChainP A f mf ay isupf o∅ (isupf z) + uz02 = record { csupz = init (SUP.A∋maximal sp) ; supfu=u = ? ; fcy<sup = ? ; order = ? } + uz03 : {z : Ordinal} → FClosure A f y z → z << isupf o∅ + uz03 = ? + uz04 : {sup1 z1 : Ordinal} → sup1 o< o∅ → FClosure A f (isupf sup1) z1 → z1 << isupf o∅ + uz04 = ? -- -- create all ZChains under o< x