Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 676:9ab62416dbdd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 Jul 2022 17:10:50 +0900 |
parents | 6a9a98904f7a |
children | be3eb95d50d9 |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Sat Jul 09 16:34:04 2022 +0900 +++ b/src/zorn.agda Sat Jul 09 17:10:50 2022 +0900 @@ -260,14 +260,14 @@ record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where field - psup : Ordinal - p≤z : psup o≤ z - p≤a : psup o≤ & A - chainf : {px : Ordinal} → px o≤ z → (w : Ordinal) → Chain A f mf ay px w + psup : Ordinal → Ordinal + psup<z : (x : Ordinal ) → psup x o< & A + chainf : (x w : Ordinal) → x o< z → Chain A f mf ay (psup x ) w + psup-mono : (x y : Ordinal) → x o≤ y → psup x o≤ psup y ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) → (z : Ordinal) → ( ( x : Ordinal ) → ZChain1 A f mf ay x ) → HOD -ChainF A f mf {y} ay z zc = record { od = record { def = λ x → odef A x ∧ Chain A f mf ay (ZChain1.psup (zc z) ) x } +ChainF A f mf {y} ay z zc = record { od = record { def = λ x → odef A x ∧ Chain A f mf ay (ZChain1.psup (zc (& A)) x ) x } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {init : Ordinal} (ay : odef A init) @@ -432,18 +432,18 @@ sc : ZChain1 A f mf ay px sc = prev px px<x pchain : HOD - pchain = record { od = record { def = λ x → odef A x ∧ Chain A f mf ay (ZChain1.psup sc ) x } + pchain = record { od = record { def = λ x → odef A x ∧ Chain A f mf ay (ZChain1.psup sc ? ) x } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } sc4 : ZChain1 A f mf ay x sc4 with o≤? x o∅ - ... | yes x=0 = record { psup = o∅ ; p≤z = ? ; p≤a = ? ; chainf = ? } + ... | yes x=0 = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } ... | no 0<x with ODC.∋-p O A (* x) ... | no noax = record { psup = ZChain1.psup sc ; p≤z = ? ; p≤a = ? ; chainf = ? } ... | yes ax with ODC.p∨¬p O ( HasPrev A pchain ax f ) ... | case1 pr = record { psup = ZChain1.psup sc ; p≤z = ? ; p≤a = ? ; chainf = ? } ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A pchain ax ) - ... | case1 is-sup = record { psup = x ; p≤z = ? ; p≤a = ? ; chainf = ? } where + ... | case1 is-sup = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } where schain : HOD schain = ? -- record { od = record { def = λ z → odef A z ∧ ( odef (ZChain1.chain sc ) z ∨ (FClosure A f x z)) } -- ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } @@ -464,7 +464,7 @@ -- chainq z z<x = ? -- ZChain1.chain-uniq ( prev z z<x) sc4 : ZChain1 A f mf ay x sc4 with o≤? x o∅ - ... | yes x=0 = record { psup = o∅ ; p≤z = ? ; p≤a = ? ; chainf = ? } + ... | yes x=0 = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } ... | no 0<x with ODC.∋-p O A (* x) ... | no noax = record { psup = ? ; p≤z = ? ; p≤a = ? ; chainf = ? } ... | yes ax with ODC.p∨¬p O ( HasPrev A (UnionCF A x chainf) ax f ) @@ -505,7 +505,7 @@ * a < * b → odef (ZChain.chain (zc ?) ) b ) → ZChain A f mf ay zc0 x no-extenion is-max with o≤? x (& A) ... | no n = ? where - ... | yes x≤a with ZChain1.chainf (zc0 (& A)) x≤a x + ... | yes x≤a with ZChain1.chainf (zc0 (& A)) ? ? ? ... | ch-init _ _ x=0 fc = ? ... | ch-is-sup ax is-sup fc = ? where -- = record { chain⊆A = {!!} -- subst (λ k → k ⊆' A ) {!!} (ZChain.chain⊆A zc)