Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 427:9b0630f03c4b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Aug 2020 18:14:14 +0900 |
parents | 47aacf417930 |
children | 94392feeebc5 |
files | OD.agda cardinal.agda generic-filter.agda |
diffstat | 3 files changed, 28 insertions(+), 32 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Thu Aug 06 11:50:35 2020 +0900 +++ b/OD.agda Sat Aug 08 18:14:14 2020 +0900 @@ -199,6 +199,13 @@ ord-od∅ : & (od∅ ) ≡ o∅ ord-od∅ = sym ( subst (λ k → k ≡ & (od∅ ) ) &iso (cong ( λ k → & k ) o∅≡od∅ ) ) +≡o∅→=od∅ : {x : HOD} → & x ≡ o∅ → od x == od od∅ +≡o∅→=od∅ {x} eq = record { eq→ = λ {y} lt → ⊥-elim ( ¬x<0 {y} (subst₂ (λ j k → j o< k ) &iso eq ( c<→o< {* y} {x} (d→∋ x lt)))) + ; eq← = λ {y} lt → ⊥-elim ( ¬x<0 lt )} + +=od∅→≡o∅ : {x : HOD} → od x == od od∅ → & x ≡ o∅ +=od∅→≡o∅ {x} eq = trans (cong (λ k → & k ) (==→o≡ {x} {od∅} eq)) ord-od∅ + ∅0 : record { def = λ x → Lift n ⊥ } == od od∅ eq→ ∅0 {w} (lift ()) eq← ∅0 {w} lt = lift (¬x<0 lt)
--- a/cardinal.agda Thu Aug 06 11:50:35 2020 +0900 +++ b/cardinal.agda Sat Aug 08 18:14:14 2020 +0900 @@ -49,25 +49,6 @@ ∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 (proj1 p) ≡ pi1 (proj1 q) → pi2 (proj1 p) ≡ pi2 (proj1 q) ) } ; odmax = odmax (ZFP A B) ; <odmax = λ lt → <odmax (ZFP A B) (proj1 lt) } --- Func∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) --- → def Func (& (Replace A (λ x → < x , f x > ))) --- Func∋f = {!!} - --- FuncP∋f : {A B x : HOD} → ( f : HOD → HOD ) → ( (x : HOD ) → A ∋ x → B ∋ f x ) --- → odef (FuncP A B) (& (Replace A (λ x → < x , f x > ))) --- FuncP∋f = {!!} - --- Func→f : {A B f x : HOD} → def Func (& f) → (x : HOD ) → A ∋ x → ( HOD ∧ ((y : HOD ) → B ∋ y )) --- Func→f = {!!} --- Func₁ : {A B f : HOD} → def Func (& f) → {!!} --- Func₁ = {!!} --- Cod : {A B f : HOD} → def Func (& f) → {!!} --- Cod = {!!} --- 1-1 : {A B f : HOD} → def Func (& f) → {!!} --- 1-1 = {!!} --- onto : {A B f : HOD} → def Func (& f) → {!!} --- onto = {!!} - record Injection (A B : Ordinal ) : Set n where field i→ : (x : Ordinal ) → odef (* A) x → Ordinal @@ -101,6 +82,12 @@ ciso : Bijection a card cmax : (x : Ordinal) → card o< x → ¬ Bijection a x +Cardinal∈ : { s : HOD } → { t : Ordinal } → Ord t ∋ s → s c< Ord t +Cardinal∈ = ? + +Cardinal⊆ : { s t : HOD } → s ⊆ t → ( s c< t ) ∨ ( s =c= t ) +Cardinal⊆ = {!!} + Cantor1 : { u : HOD } → u c< Power u Cantor1 = {!!}
--- a/generic-filter.agda Thu Aug 06 11:50:35 2020 +0900 +++ b/generic-filter.agda Sat Aug 08 18:14:14 2020 +0900 @@ -185,16 +185,16 @@ -- PGHOD : (i : Nat) → (C : CountableOrdinal) → (P : HOD) → (p : Ordinal) → HOD PGHOD i C P p = record { od = record { def = λ x → - odef P x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* p) y → odef (* x) y ) } - ; odmax = odmax P ; <odmax = λ {y} lt → <odmax P (proj1 lt) } + odef (Power P) x ∧ odef (* (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (* p) y → odef (* x) y ) } + ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) (proj1 lt) } --- -- p(n+1) = if PGHOD n qn otherwise p(n) -- next-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (p : Ordinal) → Ordinal -next-p C P i p with ODC.decp O ( PGHOD i C P p =h= od∅ ) +next-p C P i p with is-o∅ ( & (PGHOD i C P p)) next-p C P i p | yes y = p -next-p C P i p | no not = & (ODC.minimal O (PGHOD i C P p ) not) +next-p C P i p | no not = & (ODC.minimal O (PGHOD i C P p ) (λ eq → not (=od∅→≡o∅ eq))) -- axiom of choice --- -- ascendant search on p(n) @@ -210,7 +210,7 @@ field gr : Nat pn<gr : (y : Ordinal) → odef (* x) y → odef (* (find-p C P gr o∅)) y - px∈ω : odef (Power P) x + x∈PP : odef (Power P) x open PDN @@ -219,7 +219,7 @@ -- PDHOD : (C : CountableOrdinal) → (P : HOD ) → HOD PDHOD C P = record { od = record { def = λ x → PDN C P x } - ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.px∈ω lt) } where + ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.x∈PP lt) } where open PDN @@ -230,17 +230,18 @@ -- p (suc n) = if ∃ q ∈ * ( ctl→ n ) ∧ p n ⊆ q → q (axiom of choice) --- else p n +P∅ : {P : HOD} → odef (Power P) o∅ +P∅ {P} = subst (λ k → odef (Power P) k ) ord-od∅ (lemma o∅ o∅≡od∅) where + lemma : (x : Ordinal ) → * x ≡ od∅ → odef (Power P) (& od∅) + lemma x eq = power← P od∅ (λ {x} lt → ⊥-elim (¬x<0 lt )) +x<y→∋ : {x y : Ordinal} → odef (* x) y → * x ∋ * y +x<y→∋ {x} {y} lt = subst (λ k → odef (* x) k ) (sym &iso) lt + P-GenericFilter : (C : CountableOrdinal) → (P : HOD ) → GenericFilter P P-GenericFilter C P = record { genf = record { filter = PDHOD C P ; f⊆PL = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } ; generic = λ D → {!!} } where - P∅ : {P : HOD} → odef (Power P) o∅ - P∅ {P} = subst (λ k → odef (Power P) k ) ord-od∅ (lemma o∅ o∅≡od∅) where - lemma : (x : Ordinal ) → * x ≡ od∅ → odef (Power P) (& od∅) - lemma x eq = power← P od∅ (λ {x} lt → ⊥-elim (¬x<0 lt )) - x<y→∋ : {x y : Ordinal} → odef (* x) y → * x ∋ * y - x<y→∋ {x} {y} lt = subst (λ k → odef (* x) k ) (sym &iso) lt find-p-⊆P : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x y : Ordinal) → odef (Power P) x → odef (* (find-p C P i x)) y → odef P y find-p-⊆P C P Zero x y Px Py = subst (λ k → odef P k ) &iso ( incl (ODC.power→⊆ O P (* x) (d→∋ (Power P) Px)) (x<y→∋ Py)) @@ -274,7 +275,8 @@ -- -- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } -- +-- W (ω , H ( ω , 2 )) = { p ∈ ( Nat → H (ω , 2) ) | { i ∈ Nat → p i ≠ i1 } is finite } +-- -